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Lecture 3B – Field Mapping 

The method of curvilinear squares. The coaxial cable. The two conductor 
transmission line. 

The Method of Curvilinear Squares 

There are various methods we can employ to map out a field. The method of 

curvilinear squares is based upon the plotting of lines of force and 

equipotentials, just like our original picture of fields. It is done by hand, and 

may be iterative. It is used to get an idea of what the field “looks” like and to 

get estimates of capacitance and inductance of mathematically difficult 

systems. 

You can conceivably obtain a field "plot" of a three dimensional (3D) field if 

you are prepared to model in 3D. e.g. construction of a 3D grid with wires 

representing lines of force and equipotentials. 

On paper (the most convenient material) we are restricted to two dimensions 

(2D), so this method is normally based on 2D problems. 

Consider a 3D arrangement of conductors that have uniform cross-section, and 

are infinitely long. There are no field components in the longitudinal direction. 

(Why?) We only have to analyse the field by taking a cross-section. We have 

seen this before: the infinitely long conductor, the coaxial cable. 

Consider the electrostatic field around a point charge: 
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Figure 3B.1 

One method of field 
plotting is the 
method of 
curvilinear squares 

Field plotting is 
mainly used for 2D 
problems 

2D plots may be 
applied to 3D 
problems in certain 
cases 
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The electric field at A or A', distance RA from the charge is: 
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The potential (with respect to infinity) is: 
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(3B.2)

The potential is independent of where the point A lies on the circle. It is only 

dependent on the distance from the charge. Hence the circle with radius RA is 

an equipotential. 

Equipotentials are always at right angles to lines of force. Imagine a test charge 

being moved perpendicular to the direction of the field at all times. Then: 
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(3B.3)

The surface of a metal with a static charge is an equipotential, since the 

tangential part of E is zero on the surface. (If E were not zero, then charges 

would redistribute themselves on the surface until there was no force on them – 

a condition which means the tangential part of E is zero). 

We can now consider a field plot to be composed of two families of lines: one 

representing lines of force (or equivalently, lines defining tubes of flux); the 

other representing equipotentials. We will always know where to draw some of 

the equipotentials: at the surface of conductors. 

The field around a point charge (drawn in Figure 3B.1) can be considered as a 

cross-section of the field around an infinitely long line charge, as far as the 

field plot is concerned (the previous equations do not apply of course). 

The absolute 
potential around a 
point charge 
(revisited) 

to illustrate the 
concept of 
“equipotential” 

Equipotentials and 
lines of force are 
always at right 
angles in 
electrostatics 

A field plot is a plot 
of equipotentials 
and lines of force 
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In Figure 3B.1, the element: 
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Figure 3B.2 

is called a curvilinear square if p = q. A curvilinear square is a shape with four 

sides that tends to yield true squares as it is subdivided into smaller and smaller 

areas by successive halving of the equipotential interval and the flux per tube. 

We can draw field lines to satisfy the requirement that the density of lines is 

proportional to the field. We can then draw in equipotentials to obtain 

curvilinear squares. We can also not obtain curvilinear squares, which means 

the field lines are wrong. The whole process starts again by modifying the field 

lines to obtain curvilinear squares (if the plot is done in pencil). In other words, 

we proceed in an iterative fashion (if we knew what the field looked like to 

begin with, there would be no need to use this method, would there?). 

This method of field plotting is very useful for irregular shapes and 

arrangements of conductors. 

A curvilinear square 
shown pictorially 

and defined 
mathematically 

Drawing curvilinear 
squares is a “trial 
and error” method 
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Consider the electric field shown below: 
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Figure 3B.3 

The potential difference between the two conductors is V volts. The LHS 

conductor has a distributed charge +q and the RHS has -q. This is a bad plot. 

Why? Because the last equipotential converges onto another equipotential. The 

plot will have to be corrected. Correct the above field plot. Hint: the field lines 

are wrong too.  

Once we get the plot visually right (the curvilinear requirement is met), we 

may wish to determine the capacitance per unit length between the two 

conductors, using the field plot. 

We know that the capacitance between two conductors is given by: 

C
q

V
  (3B.4)

We also know from Gauss’ Law around one of the conductors: 

q    (3B.5)

where   is the flux emanating from the conductor. 

Why do a field plot? 
One reason is to 
obtain an estimate 
of capacitance (per 
unit length) 
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We could then say: 
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To calculate capacitance using this formula, we should first consider an 

isolated curvilinear cube: 
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Figure 3B.4 

It has a small amount of flux streaming through it, and a small voltage across 

it. It therefore contributes to the capacitance in some way. If the curvilinear 

cube is very small, then the flux density D may be assumed uniform across the 

face of the cube so that: 
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(3B.7) 

We can approximate the electric field magnitude E by calculating the small 

potential that exists across the curvilinear cube: 
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Capacitance defined 
in terms of flux and 
potential 

A curvilinear cube 
has flux streaming 
through it, and 
potential across it 

A curvilinear cube is 
a small capacitor 

The flux streaming 
through a curvilinear 
cube 

and the potential 
across it 
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Therefore, the amount of flux streaming through the cube may be expressed as: 

wl
h

V   (3B.9)

We can think of each curvilinear cube: 
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Figure 3B.5 

as a small field cell whose capacitance is given by: 
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(3B.10)

Also, if the curvilinear cube is small, w  h and the flux is given by: 

Vl   
(3B.11)

The total amount of flux streaming from one of the conductors is obtained by 

adding up all the small amounts of flux streaming through each flux tube: 

   
n p

 
(3B.12)

where np is the number of flux tubes in parallel (number of curvilinear squares 

in parallel). 

The total flux 
streams through all 
the curvilinear cubes 
that are in parallel 
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The total potential between the two conductors is obtained by adding up all the 

small amounts of potential between each equipotential, in going from one 

conductor to the other: 

V V
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(3B.13) 

where ns  is the number of equipotentials minus one (number of curvilinear 

squares in series). 

We can now determine the capacitance of the structure in this way: 
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(3B.14) 

But since V  is the same value for each curvilinear square, we have: 
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(3B.15) 

We can now define the capacitance per unit length of the two conductors. This 

is all we can calculate, since the capacitance of infinitely long conductors is 

infinite. Our answer may be applied to very long conductors with a small error. 
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(3B.16) 

 

The total voltage is 
across all the 
curvilinear cubes 
that are in series 

The capacitance 
using curvilinear 
squares 

The capacitance per 
unit length using 
curvilinear squares 
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Example – Parallel plate capacitor in a uniform dielectric 

For a good mental image and for the sake of completeness, we will show the 

entire field although we realise that due to the symmetry of the arrangement, 

we could get away with plotting only a 41  of the field: 
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Figure 3B.6 

The curvilinear squares in series are numbered going from the top plate to the 

bottom plate. The curvilinear squares in parallel are also numbered as we 

follow one set of equipotential boundaries around the top plate. Even though 

the fringing field extends to infinity, and some cells are outside the figure, the 

field map informs us that there are 20 cells in parallel and 8 in series. We 

therefore have: 
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Of course, practical capacitors do not have a uniform dielectric surrounding 

them – they usually have a dielectric with 1  sandwiched between the plates 

which would reduce the fringing field from the sides and outside of the 

capacitor. Field plots with varying dielectrics are best left to computers… 

A field around a 
parallel plate 
capacitor showing 
the fringing field 
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Example – Rectangular conductor between two earth planes 

Consider a rectangular conductor between two earth plates. Due to the 

symmetry of the arrangement, only a 41  of the field needs to be plotted: 
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Figure 3B.7 

The capacitance per unit length in this case is: 
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When field plotting, 
we exploit symmetry
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Example – Cylindrical conductor inside metal duct 

Due to the symmetry of the arrangement, only 1 8 of the field needs to be 

plotted. The surfaces of the inner conductor and of the duct are assumed to be 

perfect equipotentials. 
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Figure 3B.8 

Calculate the capacitance per unit length for the above arrangement. 

 

A mathematically 
difficult problem 
made easy 



3B.11 

Fundamentals of Electrical Engineering 2010 

The Coaxial Cable 

A long coaxial cable has a simple symmetry and can be approximated by an 

infinitely long cable. We have seen it before in the problems. You can derive 

the formula for capacitance per unit length analytically using the method of 

curvilinear squares and compare it with that obtained by finding the electric 

flux density, electric field, voltage and then capacitance per unit length as done 

previously. 

The method we use is identical to that used to determine the dielectric 

resistance of a co-axial cable. The dielectric may be assumed to consist of a 

very large number of concentric tubes, each with a tiny thickness: 
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Figure 3B.9 

For the dielectric tube shown: 
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(3B.17) 

where l = length of the cable. 

A long co-axial 
cable is 
approximated by 
one of infinite length 
– so we can plot the 
field 

A mathematically 
easy problem is 
used to verify the 
method of 
curvilinear squares 

The capacitance of 
a cylindrical tube 
with finite thickness 
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In the limit, for an infinitesimally thin flux tube, the capacitance is: 
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 (3B.18)

As all the tubes of flux are concentric, the capacitances dC are in series and: 
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Complete the analysis to determine a formula for C. 

The capacitance of 
a cylindrical tube 
with infinitesimal 
thickness 

The tubes are 
added in series to 
give the total 
capacitance 
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The Two Conductor Transmission Line 

To calculate the capacitance between two infinitely long conductors, we 

assume an electrostatic situation – we ignore any current in the conductors and 

analyse the effect of the charge that has drifted to and remained on the 

conductor surface. Since we assume a static state of the charge, the surface of 

the conductor is an equipotential. We then model the surface charge as a line 

charge at the centre of the conductor: 
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Figure 3B.10 

The magnitude of the electric field at radius x due to the positive line charge is: 

E
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(3B.20) 

where  =  charge / unit length. The electric potential at point P is: 
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(3B.21) 

Note that the point of zero potential is arbitrarily taken to be midway between 

the conductors. (It does not matter where we define “zero” potential, since the 

only meaningful concept is potential difference). 

A surface charge is 
modelled by a line 
charge 

The potential at a 
point due to one 
conductor 
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By superposition (assuming a linear medium, such as air), due to both line 

charges, we get: 

V
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as the total potential at point P. 

The voltage on the surface of the positive conductor (radius r) is similarly 

given by: 
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The capacitance per unit length between conductor 1 and the zero potential line 

is therefore: 
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By symmetry, the capacitance per unit length between conductors 1 and 2 is: 
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(i.e. C C10 20  and in series). 

The potential at a 
point due to both 
conductors 

The approximate 
potential at the 
surface of a 
conductor 

The capacitance per 
unit length between 
one conductor and 
zero potential  

The capacitance per 
unit length between 
the two conductors 
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The field between conductors of different radii is handled in the same way as 

the transmission line – an equivalent line charge is located somewhere inside 

the conductor so that the surface of the conductor is an equipotential: 
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Figure 3B.11 

An equipotential can 
be used as the 
surface of a 
conductor 
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Summary 

 A field plot is a plot of equipotentials and lines of force. Two dimensional 

plots are normally done on paper or a computer. 

 Field plots use the concept of a curvilinear square – a shape which has 

curved sides of roughly equal length. 

 Field plots can be used to estimate the capacitance per unit length of 

irregular shapes and arrangements of conductors. 
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