
15.1

PMcL Contents Index

2020 15 - Digital Logic Circuits

15 Digital Logic Circuits

Contents

Introduction ... 15.2

15.1 Number Systems .. 15.3

15.2 Decimal To Any Base Conversion .. 15.4

15.3 Binary Coded Decimal (BCD) .. 15.5

15.4 Boolean Quantities and Variables ... 15.5

15.5 Boolean Functions ... 15.6
15.5.1 The AND Function ... 15.6
15.5.2 The OR Function .. 15.8

15.5.3 The NOT Function .. 15.9

15.5.4 The NAND Function .. 15.10
15.5.5 The NOR Function ... 15.11

15.6 Electronic Logic Families .. 15.12

15.7 Packing Density ... 15.12

15.8 Boolean Algebra .. 15.13

15.9 Boolean Identities .. 15.15

15.10 De Morgan’s Theorem ... 15.17

15.11 Realising Logic .. 15.19

15.12 Summary .. 15.22

15.13 References ... 15.23

Exercises .. 15.24

15.2

Index Introduction PMcL

15 - Digital Logic Circuits 2020

Introduction

Logic circuits are at the heart of every digital device, ranging from

supercomputers to miniature IoT devices. Desktop computers and mobile

phones are in the middle of this range, and are well-known by consumers.

All logic circuits rely on just a handful of basic logic gates. These gates

perform what is known as Boolean algebra – an algebra put forward by George

Boole in 1854 in order to systematise logic.

15.3

PMcL Number Systems Index

2020 15 - Digital Logic Circuits

15.1 Number Systems

The most common numbering system in use today is the decimal system which

utilises ten digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The number of digits used in the

system is known as its base or radix; the base of the decimal system is ten.

When digits are strung together a number is formed and each digit within the

number is associated with the radix raised to a power according to its position

in the number.

EXAMPLE 15.1 Base 10 Number

decimal 853.4 = 853.410 = (8102) + (5101) + 3100) + 410-1

Note: subscript represents the base of the number.

Another common numbering system used is the binary system which utilises

two digits 0, 1 and thus has a base of two. Binary digits are often referred to as

"bits" (binary digits), an eight-bit number (byte) will have 8 binary digits.

A binary number can be converted to its equivalent decimal number by

expanding the number as a polynomial in powers of the base and the adding the

terms.

EXAMPLE 15.2 Base 2 (Binary) Number

10

0123

2

13

1048

212021211101

Any base may be converted to base ten by this method.

15.4

Index Decimal To Any Base Conversion PMcL

15 - Digital Logic Circuits 2020

15.2 Decimal To Any Base Conversion

A decimal number may be converted to its equivalent in another base by the

repeated division by the base, the successive remainders giving the required

number.

EXAMPLE 15.3 Base Conversion

eg. 1020 to binary

2 20

2 10

2 5

2 2

2 1

0

remainder 0 (LSB)

remainder 0

remainder 1

remainder 0

remainder 1 (MSB)

thus 210 1010020

Note: LSB = Least Significant Bit

MSB = Most Significant Bit

Fractions can be converted by repeated multiplication by the base with the

successive integers giving the required number.

EXAMPLE 15.4 Base Conversion

0.610 to binary:

2.0126.0

6.0128.0

8.0024.0

4.0022.0

2.0126.0

etc. Thus ...10011001.06.0 10

Note: When converting fractions there is not always an exact conversion.

15.5

PMcL Binary Coded Decimal (BCD) Index

2020 15 - Digital Logic Circuits

15.3 Binary Coded Decimal (BCD)

As can be seen from the previous examples, it can take a large number of bits

to represent a large decimal number and conversion of a large number of bits

back to decimal will be long and tedious. The conversion can be overcome if

the binary number is coded such that each four bits represent one decimal digit.

EXAMPLE 15.5 Base Conversion

435

010000110101534 BCD10

Note: the leading zero is required.

15.4 Boolean Quantities and Variables

A Boolean quantity is a quantity that has only two possible states.

EXAMPLE 15.6 Boolean Quantities

The state of a switch - ON/OFF

Is it raining ? - YES/NO

Flipping a coin - HEADS/TAILS

A Boolean variable is a variable that has been assigned to a Boolean quantity.

For example, for the state of a switch the variable S = switch ON and NOT S or

S represents the switch being OFF.

S is the Boolean variable assigned to the state of the switch. If the switch is on,

S is true and has the binary value of "1", if the switch is off, S is true and S is

false. Here S has the binary value of "0" and S has the binary value of "1".

15.6

Index Boolean Functions PMcL

15 - Digital Logic Circuits 2020

15.5 Boolean Functions

15.5.1 The AND Function

Consider the circuit below:

X

Z

Y

lamp

Figure 15.1

There are three Boolean variables X, Y and Z. The two switches have been

assigned the variable X and Y and have the value "1” when the switches are

operated. The variable Z has been assigned to the lamp and has the value "1"

when the lamp is on.

From the circuit it can be seen that the lamp will be on only when both

switches, X and Y, are operated and thus it can be written:

Z = X AND Y or Z = X.Y (15.1)

The "." represents the AND function.

15.7

PMcL Boolean Functions Index

2020 15 - Digital Logic Circuits

The function Z = X.Y can be tabulated in a truth table as shown in Table 15.1.

The truth table tabulates the outputs of a function against all possible variations

of input. For N input variables there are 2N possible combinations.

Input Output

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

Table 15.1 – AND gate ‘truth’ table

The symbol for the AND gate is shown below:

X

Y
Z=X.Y

Figure 15.2

In practice the inputs X and Y are voltage levels

e.g. logic 1 = + 3.3 volts

logic 0 = 0 volts

and the output will also be a corresponding voltage level.

15.8

Index Boolean Functions PMcL

15 - Digital Logic Circuits 2020

15.5.2 The OR Function

Consider the circuit below:

X

Z

Y

Figure 15.3

From the circuit shown in Figure 15.3, it can be seen that the lamp is on when

either switch X or Y is operated and the output, Z can be written as:

Z = X OR Y or Z = X + Y (15.2)

where “+” represents the OR function. The truth table is shown below:

Input Output

X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

Table 15.2 – OR gate ‘truth’ table

The symbol for the OR gate is shown below:

X

Y
Z=X+Y

Figure 15.4

15.9

PMcL Boolean Functions Index

2020 15 - Digital Logic Circuits

15.5.3 The NOT Function

Consider the circuit below:

Z

X

Figure 15.5

From the circuit shown in Figure 15.5, when the switch X is operated (X=1) the

contacts are open and thus the lamp goes out and thus the expression can be

written as:

Z = NOT X or XZ (15.3)

The NOT function is more commonly called an inverter. The truth table is

shown below:

Input Output

X Z

0 1

1 0

Table 15.3 – NOT gate ‘truth’ table

The symbol for the inverter is shown below:

X Z=X

Figure 15.6

Note that it is the logic level that is inverted, not the actual voltage

representing the logic level, i.e. If you NOT +3.3 V you get 0 V, not -3.3 V.

15.10

Index Boolean Functions PMcL

15 - Digital Logic Circuits 2020

15.5.4 The NAND Function

The combination of an AND gate followed by an inverter operates as a gate

known as the NAND gate i.e. the NOT AND gate, as shown below:

X

Y
X .Y

X

Y

X .Y

X .Y

Figure 15.7

The truth table of a NAND gate is shown in Table 15.4.

Input Output

X Y Z

0 0 1

0 1 1

1 0 1

1 1 0

Table 15.4 – NAND gate ‘truth’ table

From this table the output is true when X or Y are true, i.e. either X or Y are

false, thus the NAND function can be represented by the circuit shown below:

X

Z=X+Y=X .Y

Y

Figure 15.8

15.11

PMcL Boolean Functions Index

2020 15 - Digital Logic Circuits

15.5.5 The NOR Function

The combination of an OR gate followed by an inverter operates as a gate

known as the NOR gate i.e. the NOT OR gate, as shown below:

X

Y

X+Y
X+Y

X

Y
X+Y

Figure 15.9

The truth table of a NOR gate is shown in Table 15.5.

Input Output

X Y Z

0 0 1

0 1 0

1 0 0

1 1 0

Table 15.5 – NOR gate ‘truth’ table

From this table the output is true when X and Y are true, i.e. X and Y are both

false, thus the NOR function can be represented by the circuit shown below:

X

Z=X .Y=X+Y

Y

Figure 15.10

15.12

Index Electronic Logic Families PMcL

15 - Digital Logic Circuits 2020

15.6 Electronic Logic Families

So far we have considered logic gates as a certain combination of switches. In

practice, switches are not a suitable form of input and also cannot be operated

fast enough. Generally logic systems are required to operate off an input

voltage in a time period which ranges from days to nanoseconds.

The predominant logic family today is made from pairs of transistors known as

Complimentary Metal Oxide Semiconductor (CMOS) transistors. They can

operate at frequencies in the GHz range and have an extremely low power

consumption, making them almost the “ideal” logic family.

15.7 Packing Density

With integrated circuits (ICs) there are several terms associated with the

number of transistors that can be placed on a single chip.

 Small Scale Integration (SSI) – up to 100 transistors

 Medium Scale Integration (MSI) – up to 1 000 transistors

 Large Scale Integration (LSI) – up to 100 000 transistors

 Very Large Scale Integration (VLSI) – millions of transistors

15.13

PMcL Boolean Algebra Index

2020 15 - Digital Logic Circuits

15.8 Boolean Algebra

As with normal algebra, the associative, commutative and distributive laws

also apply in Boolean algebra. The associative laws are shown in Figure 15.11

and Figure 15.12 for the OR and AND functions – the equivalent logic diagram

is also shown.

A
B
C

Z

Z=A+B+C

A
B Z
C

=(A+B)+C

Z
A
B
C

=A+(B+C)

Figure 15.11

15.14

Index Boolean Algebra PMcL

15 - Digital Logic Circuits 2020

A
B
C

Z

Z=A .B .C

A
B Z
C

=(A .B) .C

Z
A
B
C

=A .(B .C)

Figure 15.12

The commutative law states:

ABBA .. and ABBA

15.15

PMcL Boolean Identities Index

2020 15 - Digital Logic Circuits

The distributive law is shown below:

Z=(A+B) .(C+D)

Z

A

B

C

D

Z=A.C+A.D +B.C+B.D

Z

A

C

A

D

B

C

B

D

Figure 15.13

15.9 Boolean Identities

There are several Boolean identities. These are summarised below:

AABABAA

AAAA

AAAAAA

AAA

AAA

0.1

.

1.11

00.0

(15.4)

A switch analogy of the identities is shown in Figure 15.14.

15.16

Index Boolean Identities PMcL

15 - Digital Logic Circuits 2020

A

L=A

'0'

A

'1'

A

L=A

A

A+A=A

A

A

L=1

A+ =1

A+ =A0

L=1

A+A=

A

A .A=

A

L=A

A

A '1'

A '0'

A

A .A=A

L=0

A . =A1

L=A

A . =0

L=0

01

1

0

A

A

L=A+B

A+A .B=A+B

B A

10
1 0

A

0
1

A

A= A

Figure 15.14

15.17

PMcL De Morgan’s Theorem Index

2020 15 - Digital Logic Circuits

15.10 De Morgan’s Theorem

De Morgan’s Theorem states:

BABA

BABA

.

.

or equivalently:

BABA

BABA

.

.

(15.5)

(15.6)

The theorem can be proved by truth table. This proof is shown below:

A B A B A.B BA A+B BA.

0 0 1 1 0 0 0 0

0 1 1 0 0 0 1 1

1 0 0 1 0 0 1 1

1 1 0 0 1 1 1 1

General rules for De Morgan’s Theorem are:

a) change AND to OR and OR to AND

b) negate each variable (we now have the dual of the original equation)

c) negate the function

De Morgan’s Theorem is used to convert a function containing AND and OR

operators to a function containing only one type of operator. The function can

then be realised by using only NAND or NOR gates.

15.18

Index De Morgan’s Theorem PMcL

15 - Digital Logic Circuits 2020

EXAMPLE 15.7 De Morgan’s Theorem

Given:

DCBDCBAF

we apply De Morgan’s Theorem to get:

DCBDCBAF

DCBDCBAF

This function can now be realised by using only NOR gates and is shown

below:

C
D

A

B

C

D

B B+C+D

+ DC

+A B

F = + ++A B + DC B+C+D

15.19

PMcL Realising Logic Index

2020 15 - Digital Logic Circuits

15.11 Realising Logic

An algebraic expression can be realised from a set of logical statements.

EXAMPLE 15.8 Realising Logic

A punch press is controlled by an electronic logic circuit such that it will

operate only under the following conditions:

a) Guard grille is closed, work is in position, next job is waiting.

b) Guard grill is closed, no work is in position, next job is waiting.

c) Guard grille is closed, work is in position, no job is waiting.

To start, Boolean variables must be assigned to each variable:

P = press operated

G = guard grille closed

W = work in position

N = next job waiting

The expression above can now be evaluated

a) NWG ..

b) NWG ..

c) NWG ..

and thus:

NWGNWGNWGP

The Boolean identities can be used to reduce this expression.

NWGNWGNWGP

NWGNWGNWGNWGP using AAA

NWGNWGNWGNWGP using ABBA

 WWNGNNWGP using commutative law

NGWGP .. using 1 AA and AA 1.

 NWGP . using commutative law

Thus NGWGNWGNWGNWGNWGP

15.20

Index Realising Logic PMcL

15 - Digital Logic Circuits 2020

This reduction can be verified by a truth table, shown below:

G W N P G.W G.N G.W+G.N

0 0 0 NWG .. 0 0 0 0

0 0 1 NWG .. 0 0 0 0

0 1 0 NWG .. 0 0 0 0

0 1 1 NWG .. 0 0 0 0

1 0 0 NWG .. 0 0 0 0

1 0 1 NWG .. 1 0 1 1

1 1 0 NWG .. 1 1 0 1

1 1 1 NWG .. 1 1 1 1

When the two variable function WG. is entered into the three variable truth

table a “1” appears in the NWG .. and NWG .. positions. This is done because

we don’t care what the value of N is. The same applies for NG. .

The figure on the next page shows the various circuit configurations for

operating the press.

The circuits shown are:

a) The original equation for press equation

NWGNWGNWGP

b) The reduced equation

 NWGP .

c) NOR gate representation of the reduced equation

NWGP

NWGP

 .

d) NAND gate representation of the reduced equation

NWGNWGP

The final NAND gate is used as an inverter to convert the previous

NAND gate to an AND gate.

e) NAND gate representation of

NGWG

NGWGP

.. .

..

15.21

PMcL Realising Logic Index

2020 15 - Digital Logic Circuits

G
W
N

W

G

N

W
G

N

(a) P=G .W .N+G .W .N+G .W .N

P

P

W

N

G

(b) P=G .(W+N)

W

N

G P

(c) P=G+(W+N)

W

N

G

(d) P=G .(W .N)

P

G

W

G

N

P

(e) P=G .W .G .N

From the circuits, the NOR gate representation in figure (c) is the simplest

representation. Figure (b) requires two different gates. We normally try to

reduce our logic to that which requires just one type of gate, since different

gates are not available in one package. Four two-input NOR gates are available

in one package (e.g. 74AC32) and four two-input NAND gates are available in

one package (e.g. 74AC00), so both the all NOR and all NAND

implementations will use just one IC.

15.22

Index Summary PMcL

15 - Digital Logic Circuits 2020

15.12 Summary

 The binary system, which utilises two digits 0, 1 and thus has a base of two,

is used in digital logic circuits and computing in general. Binary digits are

often referred to as "bits" (binary digits). An eight-bit number is called a

byte.

 A Boolean quantity is a quantity that has only two possible states – 0 or 1.

A Boolean variable is a variable that has been assigned to a Boolean

quantity.

 Boolean algebra is a new form of algebra, designed to operate with

Boolean variables. Some laws are intuitive, whilst some are not. Most rules

of the algebra can be derived using truth tables.

 Some important Boolean identities are:

AABABAA

AAAA

AAAAAA

AAA

AAA

0.1

.

1.11

00.0

 De Morgan’s Theorem can be used to eliminate either the OR operation or

the AND operation:

BABA

BABA

.

.

15.23

PMcL References Index

2020 15 - Digital Logic Circuits

 A summary of the fundamental digital logic gates is given below:

Name Graphic symbol
Algebraic

function
Truth table

AND

X

Y
F

YXF .

X Y F

0 0 0

0 1 0

1 0 0

1 1 1

OR

X

Y
F

YXF

X Y F

0 0 0

0 1 1

1 0 1

1 1 1

NOT X F

XF

X F

0 1

1 0

NAND

X

Y
F

YXF .

X Y F

0 0 1

0 1 1

1 0 1

1 1 0

NOR

X

Y
F

YXF

X Y F

0 0 1

0 1 0

1 0 0

1 1 0

15.13 References

Mano, M. Morris: Digital Logic and Computer Design, Prentice-Hall, Sydney,

1979.

15.24

Index Exercises PMcL

15 - Digital Logic Circuits 2020

Exercises

1.

Write out the first 20 decimal digits in:

a) Base 16 (hex)

b) Base 8 (octal)

c) Base 2 (binary)

2.

Convert the decimal number 250.5 to:

a) Base 8

b) Base 16

c) Base 2

3.

Convert the following decimal numbers to binary:

a) 12.0625

b) 410

c) 673.23

d) 1998

4.

Convert the following binary numbers to decimal:

a) 10.10001

b) 101110.0101

c) 1110101.110

d) 1101101.111

5.

Convert:

a) binary 11010111.110 to decimal, octal hexadecimal

b) octal 623.77 to decimal, binary, hexadecimal

c) hex 2AC5.D to decimal, octal, binary

15.25

PMcL Exercises Index

2020 15 - Digital Logic Circuits

6.

Write down in BCD the decimal number 8620 and compare this with its binary

equivalent.

7.

Express the following switching circuit in binary logic notation:

A

B C

L

8.

A and B are inputs applied to two logic gates. C and D are the respective

outputs of each gate. Name the type of logic gate used to give:

a) output C

b) output D

A
1

0

B
1

0

C
1

0

D
1

0

15.26

Index Exercises PMcL

15 - Digital Logic Circuits 2020

9.

Simplify the following Boolean functions to a minimum number of literals:

a) yxxy

b) yxyx

c) zxyyxxyz

d) yxzzx

e) BABA

f) xywzzwy

10.

Reduce the following Boolean functions to the required number of literals:

a) CBACABBCACBAABC to five literals

b) BCDABCABC to four literals

c) ABCDAACD to three literals

d) BADCADCADCA to four literals

11.

Find the complement of the following Boolean functions and reduce them to a

minimum number of literals:

a) DCBADACB

b) BCAACDCBADB

c) BABAAB

d) DCBA

12.

Obtain the truth table of the function:

zyyxxyF

13.

Implement the simplified Boolean functions from Q10 with logic gates.

15.27

PMcL Exercises Index

2020 15 - Digital Logic Circuits

14.

Given the Boolean function:

zyyxxyF

a) Implement with AND, OR and NOT gates.

b) Implement with only OR and NOT gates.

c) Implement with only AND and NOT gates.

d) Implement with only NAND gates.

15.

Simplify the functions 1T and 2T to a minimum number of literals, and realise

the circuit with logic gates.

A B C
1T 2T

0 0 0 1 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 0 1

1 0 1 0 1

1 1 0 0 1

1 1 1 0 1

