

7 Capacitive Touch Sensor Analysis

A *Personal Solar Torch* has a square capacitive touch sensor, 10 mm on each side, as shown below:

An electrical model of the system is shown below:

Self-capacitance touch sensors use a single sensor electrode to measure the apparent capacitance between the electrode and the 0 V common of the touch sensor circuit.

Note: $\varepsilon_0 = 8.85419 \text{ pFm}^{-1}$.

The Human Body Model (HBM) has the following typical values: $R_h = 1.5 \text{ k}\Omega$, $C_h = 100 \text{ pF}$.

 C_t may be modelled as a parallel plate capacitor. A user's fingertip placed onto a solid surface may be approximated as a disc with a diameter of 8 mm. Capacitor plates are the touch sensor electrode and the user fingertip. The dielectric is "solder mask" material, thickness 0.1 mm, with $\varepsilon_r = 3.7$.

 $C_g = 20 \,\mathrm{pF}$ is the capacitance of the coupling between the PST 0 V common and earth. $C_x = 10 \,\mathrm{fF}$ is the capacitance of the coupling between the sensor and earth.

- (a) Determine whether the resistors are important in the analysis.
- (b) Show that in series capacitors, the dominant effect is that of the smallest capacitor.
- (c) Determine the no-touch capacitance as sensed by the microcontroller (μ C).
- (d) Determine the touch capacitance as sensed by the μ C.