Lecture 1 — The Electric Power System

Overview. The symmetrical three-phase power system. Electrical power in AC
circuits. Measurement of three-phase power Per-unit values of electrical

quantities.

Overview

The modern electric power system is a vast interconnected network of

components ranging from generators, transformers, transmission lines and a

wide variety of “loads”. It is important to analyse both the steady-state and

transient behaviour of such a system in order to make valid decisions about the

design, operation and protection of such a system. Also, today’s power system

is increasingly becoming a mixture of power and communications, with

“intelligent” networks being designed and installed all over the world.

Combined with the drive towards renewable energy, such a convergence of

technologies has rejuvenated the area of power systems.

Early History of Power Systems

1880

1882

1884
1885

1886

1888
1889

1891

Edison starts full-scale manufacture of DC generators and
incandescent lamps.

First power stations built by Edison, using 30 kW 110 V DC
generators driven by steam engines:

January: Holborn Viaduct, London.
September: Pearl St, New York City. Supplied 59 customers.

Due to the low voltage, the maximum transmission distance was
limited to about 1.6 km.

Sprague starts manufacture of DC motors.
Stanley builds first practical transformer.

First AC system in operation in Great Barrington, Massachusetts.
Steam engine driving a Siemens 6 kW 500 V single-phase
alternator. Power transmitted over a distance of 1.2 km, then
transformed down to 100 V.

Tesla builds induction and synchronous machines. (3-phase?)
First AC line in USA (4 kV, 21 km). (3-phase?)

First 3-phase line in Germany (12 kV, 179 km).
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1.2

Present-Day Power Systems

Present-day systems are universally three-phase AC (reasons to be discussed
later), but some large systems incorporate high voltage DC transmission links
in special circumstances. Where DC is required for an industrial process,

rectifier plant is used.

Generator efficiency improves with size. With present technology the optimum
practical output of steam turbine generators for large-scale generation is
probably around 600 to 800 MW, and the optimum voltage about 23 kV.

Transmission voltages (long distance) range from 66 kV to 750 kV and higher.
High voltage distribution (short to medium distance) voltages range from 2.2

kV to 132 kV, overlapping the transmission range.

Most (except very large) consumers receive power at 400 / 230 V (in

Australia).

Frequency for public systems has been standardised to 50 Hz in most of the
world, and 60 Hz in the USA.

The early power supply systems typically had a single power (generating)
station supplying a multitude of loads. Some small isolated systems today are
similar, but large scale present-day public power supply networks have many

interconnected power stations, and are therefore more difficult to analyse.
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Notation

As, more often than not, we will be dealing with complex, rather than real
values, we will use normal upper case letters to denote complex quantities

(phasors, impedances, etc.).

The magnitudes, or absolute values, of the complex quantities will generally be
indicated by enclosing the upper case letter between vertical bars. There are

some exceptions to this rule. The most notable exceptions are:

Vh = RMS magnitude of the phase voltage (1.1a)
Vine = RMS magnitude of the line voltage (1.1b)
Iph = RMS magnitude of the phase current (1.10)

lline = RMS magnitude of the line current
(1.1d)

Values of AC voltage and current (absolute values, as well as real and
imaginary components) will be assumed to be RMS (not peak), unless stated

otherwise.

For instantaneous values of waveform (voltage, current, power, etc.) we will

use lower case letters.

Special margin notes draw attention to some important points.
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peak value, RMS
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instantaneous
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1.4

The Symmetrical Three-Phase Power System

The Phasor Operator h

The phasor operator
h defined

Define:

.2
he—t, j£=e‘ 3 =1,120°
2 2 (1.2)

Though h is defined as a complex constant, it can also be regarded as an
operator which rotates a phasor by 120° anti-clockwise. Similarly, j= J-1is

an imaginary constant, but can be regarded as an operator which rotates a

phasor by 90°.
Alternative symbols for h, found in textbooks, are ‘a’ and ‘& °.

From the definition of h, we can easily derive the integer powers of h, and

some of their combinations:

h:14120°:1+j£ h*=14—120°=—1—j£=h2
2 2 2 72
he =1,240° =1 _ jﬁzh* (h?] =h
2 72
h® =1,360°=1,0°=1+ jO h* =h, h°=h?
h™ =1/-120°=1,240°=h®> h? =1/-240°=1,120°=h (1.3)

The most important relation containing h is:

2 1.4
1+h+h*=0 (1.4)
We also have:

1+h=-h% =1,60° 1—h=g—j73=ﬁ4—3oo

1+h? =—h=1/-60° 1—h2:2+j‘§:ﬁ4300 (1.5)
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Some of these relationships are shown below:

h-h?
A
h h? 1- h?
-1 - l=h3
h?® -h
Figure 1.1
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1.6

Star-Connected Voltage Source

Consider a simple symmetrical three-phase system, consisting of three voltage

sources V, V, V, as shown:

— V.

[}
<
<
&

ca

|
+
<
O
=<

n Vbc

Figure 1.2

The terminals a, b, ¢ are the line terminals. The terminal n is the neutral

terminal. The voltages V, V, V. are the line-to-neutral voltages, which are (in

the star-connected system) the same as phase voltages.

Let these be, in phasor notation:

V, =V, £0
V, =V, £0-120°
V., =Vph4¢9 —240° (1.6)

Vph = RMS magnitude of the phase voltage (positive real value)

The phasors (V, V, V,) are drawn in clockwise order. Rotating in the

anticlockwise direction the phasors will then present themselves in the correct

sequence to a stationary observer.
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Using the operator h:

V, =V,,£0
V, =h?V, (1.7)
V. =hvV,

The phasor diagram in Figure 1.2 is drawn for #=0. The corresponding

instantaneous voltages are:

Figure 1.3
with:
v, = V2V, |cos(at) (1.8)
27
Vv, = \/§Va COS a)t—? (L8b)
=2V {37
¢ a|COS| @ 3 (1.8¢)

The system is said to have a phase sequence abc. The phases may also be
identified by three colours, e.g. red, white, blue. In that case red-white-blue
(formerly red-yellow-blue) is the standard phase sequence. Different colours

and symbols (e.g. RST) might be used in other parts of the world.
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1.8

The line-to-line voltages, measured between the three pairs of line terminals,

are:
By c_onvention the
the three-phase Vo=V, -V, =(1-h2), =(V3230° N, =V, 1.9
ﬁﬁt-?gjnfgevrgntaogtge V,, =V, -V. =h(h-1)V, = (\/542700)/51 =h* (1.9b)
V, =V, -V, =(h-1)V, = (J§41500)/a =hv,, (1.90)
and:

Voltage magnitudes

quoted without _ _ _ — — 1.10
qualification usually Nab‘ - ’Vbc‘ - ’Vca‘ - \/§Na‘ - \/gvph _Vline (1.10)
are line-to-line

voltages, or simply

line voltages Viine = RMS magnitude of the line-to-line voltage, usually

called (somewhat ambiguously), “the line voltage”.

Thus the line-to-line voltages (V,, V,. V., ) have the same sequence as the line-

to-neutral voltages (V, V, V,), but their magnitudes are multiplied by V3, and

they lead the corresponding phase voltages by 30°.

Similarly:
V, =V, -V, =(1-h\, =(v3£-30°), =V, (111)
Voo =V, -V, = (h? -1}, =(VB2210°N, =hd,, @i
V,, =V, -V, =h(1—h), = (v3200°), =hv,, (1.110)

Thus the line-to-line voltages (V,, V., V) also have the same sequence as the
line-to-neutral voltages (V, V, V.), but in this case their phase angles lag the

phase voltages by 30°.
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1.9

Star-Connected Load

Consider a simple symmetrical three-phase system, with three equal load

impedances connected in a star:

- JrVa a Ia d
W%, 7
1)—{ :: )—()—P—I I—Il
JFVC c IC Z
q b
n In: O
Figure 1.4

The independent voltage sources are as before:

V, =V,,£0
V, =h?V, (112)
V. =hV,

and the three equal load impedances are:

Z =R+ jX (113)
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1.10

Obviously, the phase currents (identical to line currents in this case) are:

4 (1.14)
|, =h’l, =(1£-120°)I,
| =hl, =(1£-240°)I,

Thus, once the phase “a” current 1, has been calculated, the other two phase

currents can be obtained by rotating the 1, phasor by 120° increments.

Since 1+h+h?>=0, the phase currents sum to zero. Therefore, the neutral

current 1, =0, and the neutral connection is redundant. In practice, for reasons

to be covered later, it may be either omitted or connected, and we talk of

3-wire and 4-wire systems.

We also have:

“a‘ = “b‘ = “c‘ = ph — Iline star connection only (1.15)

Ioh = RMS magnitude of the phase current

lline = RMS magnitude of the line current
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1.11

Delta Connection

Either the sources or the loads (or both) may also be connected in a loop or

delta formation. This is illustrated below for a delta connected load:

a Ia Iab Z' a Ia Z
b Ib Ibc Z b Ib Z
o—»—eo—>»—| ] o—»— 1 —o
c I lca Z c I Z
o——eo—»—[ 1 — o——1 1 —
Delta-connected load Equivalent star load
Figure 1.5

For the delta circuit the line-to-line voltages (V,, V,. V., ) are also the phase

voltages. Thus (Vph)

delta V“”e )

The phase currents are (1, 1, 1,) with magnitudes of (I ph)dena. The line

C

currentsare (I, 1, I.), with magnitudes of I, = \/§(I ph)

delta *

For every delta connected circuit there is an equivalent star circuit. Because a

delta circuit has no neutral connections, the reverse is not necessarily true.

Let (V, V, V,) be the equivalent star phase voltages. Then:

= M 1Z| = M = M therefore|Z| = ‘Z—

I A T 3 —

[

We can assume both Z and Z' have the same angle, therefore the equivalent

star impedance is:

To avoid confusion,
Z ’ it is generally best to
Z - convert all delta
3 (1.17)  circuits to equivalent
star circuits for
network

Power Circuit Theory 2011



Effective impedance

defined

1.12

Coupling Between Phases

In the previous sections we assumed no coupling between the three phase
impedances Z (or Z' in case of delta-connected impedances). Now, let us
assume that we have a symmetrical passive circuit, so that the self-impedances
of the three phases are equal, and the mutual impedances between phases are

also equal.

Let:

Z =self -impedance of each phase

Z,, = mutual impedance between any pair of phases (1.18)
then:

Va Zs Zm Zm Ia Zs|a+zm(|b+|c)

Vb = Zm Zs Zm Ib = Zs|b+zm(|a+|c)

Vc Zm Zm Zs Ic Zs|c+zm(|b+|a) (1.19)

For symmetrical currents, 1, +1, +1, =0, therefore:

Va Ia Ia
Vi :(Zs_zm l, |[=Z]| 1,
Vc Ic Ic (1.20)

where Z =Z,-Z,, is the effective impedance per phase, or simply “impedance

per phase”.

The effective impedance per phase can be measured directly, using three-phase
currents, or can be calculated, if we know the self and mutual impedances.
When the term “impedance”, without further qualification, is used in three-
phase work, the effective impedance per phase is generally implied. This
impedance Z can be used for calculations in the completely symmetrical case
only. Eq. (1.19) is more general: although it assumes symmetrical impedances,

it does not assume symmetrical currents.
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Electrical Power in AC Circuits

Power in a Single-Phase Circuit

Consider the single-phase network shown below:

i v
+ 1-phase m A
t
V| network J\M V
¢

<

Figure 1.6
Let
v =2\ |cos(at + )
i = /2|1 cos(at + B) (21
and define
p=a-p (22

Then the instantaneous power input to the network is:
p=vi
= 2V|I|cos(@t + & )cos(at + )

=V |1[lcos(x - B)+ cos(2at +a + )]
= ’V H | ‘[COS ¢+ COS(2a)t +a+ ﬂ)] (1.23)

Power Circuit Theory 2011

1.13



1.14

P is the average The second term oscillates at double the supply frequency, and contributes
value of p, not the

RMS value, which nothing to the average power, which is:

has no useful
meaning in this (1.24)
case, despite the _ .
widespread P= ’V H I ‘COS¢

(mis)use of the term
“RMS power” in the

hi-fi industry Further expanding Eq. (1.23), using cos(A—B)=cos AcosB +sin Asin B, we

get:

p=N|I[cosé +cos(2at + a + B)]
= V|1 [[cos ¢ + cos(2at + 2cr)cos ¢ +sin(2et + 2 )sin @]

=V|I|cosg[L+cos(2at + 2a )]+ |V |1]sin gsin(2et + 2a) (1.25)

Now define the reactive power:

Reactive power

defined Q = ’V H | ‘Sin ¢ (1.26)

then:
p = P[1+cos(2at + 2 )|+ Qsin(2wt + 2¢) (1.27)

The instantaneous power associated with the real and reactive power

components is shown below:

p associated with P p associated with Q

R IVANYANA WA
VvV V V UV

o
o

Figure 1.7
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Using phasors, we define complex power:

*

S =VI

Corresponding to Eqg. (1.21), we have:

V=N|Za

| =|l|£8
1" =[l|l£-5

and we have:
VI'=N|llZa-p
=Vil|£¢o
=V[I|(cos¢g + jsing)

Hence the complex power is:

S=VI =|S|£Z¢=P+jQ (complexVA)

where:

S| =N| 1| =apparent power (VA)
P =[S|cos¢ = real power (W)
Q =|S|sin ¢ = reactive power (var)

¢ = angle by which the voltage V leads the current |

S| =P?+Q?
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Complex power
(1.28) defined

(1.29)

(1.30)

(1.31)

Components of
complex power

Real power is also
known as active
power and average
power

(1.32)



1.16

These relationships are illustrated below:

Q S
Vv
& >
G
$ -0
Figure 1.8
If the network (load) has an impedance Z , then V =ZI , and:
* * 2
S=VI'=ZIl" =Z|l| (1.33)
If the network (load) has an admittance Y , then 1 =YV , and:
* *y , K * 2
S=VI'=WY =YV (134

It can be shown that the total complex power S =P+ jQ consumed by a

network is the sum of the complex powers consumed by all the component

parts of the network. This conservation property is not true of the apparent

power [S|.
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1.17

Power Factor and Dissipation Factor

We define:

P Power factor defined
— =CO0S ¢

P fact f)=
ower factor (p.f.) \S\ L.35)

and:

Dissipation factor

o P
Dissipation factord =—=tano defined

R

where ¢ =90°—¢ = loss angle

(1.36)

Power factor is normally applied to useful power system loads where the ideal

is to maximise real power.

Dissipation factor is used with inductors, capacitors, and insulating materials,

where the ideal is to minimise real power dissipation.

“Quality factor” = d™*, commonly called “Q”, is not to be confused with the

reactive power, Q.
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1.18

Power in a Three-Phase Circuit
Complex Power

Because the complex power S =P+ jQ in any circuit is equal to the sum of
the complex powers in parts of the circuit, the complex power of a symmetrical
three-phase circuit must be equal to the sum of the powers in each phase. In the

case of the symmetrical system this is three times the power in each phase:

Three-phase power P= 3\/ph I oh COS¢
for a symmetrical
circuit using phase — 1
guantities Q - 3Vphl ph sin ¢
S=3V 1, (1.37)

where V, and |, are RMS magnitudes of voltage and current per phase, and

¢ is the angle by which the phase voltage leads the phase current.

Egs. (1.37) converted to use line current and line voltage read:

Three-phase power P \/§V |
for a symmetrical — _ )
circuit using line line " line COS¢
quantities -
Q = \/évline I line sin ¢
— * 1.38
S = \/évlinelline ( )

The apparent power is |S| =,/P?+Q? as for the single-phase case.
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Instantaneous Power

Consider the simple symmetrical three-phase system shown below:

+Va Ia Z

a

— TV I 7

Figure 1.9

Using phase “a” voltage as the time reference, i.e. setting « =0 in Eq. (1.21),

we get:

v, =2V, cos(wt) i, =21, cos(at - ¢)
v, =2V, cos(wt —27/3) i, =21, cos(wt —27/3 - ¢)
v, =2V, cos(wt —47/3) i, =21, cos(wt - 47/3~¢)

The instantaneous power in each phase is:

P, =V,i, = 2V, 1, cos(at)cos(wt — ¢)
Py =Yy, = 2V, |, cOS(at — 277/3)cos(wt — 27/3 - @)

P, = Vi, = 2V, 1, cos(at — 47/3)cos(at — 47/3- )

ph
Using 2cos Acos B = cos(A+ B)+cos(A—B), we expand:

p, =V,i, =V 1 [cosé+cos(2at — )|

ph* ph
P, = Vyi, =V, | . [cos @ + cos(2et — 47/3 - ¢)]

ph ™ ph

P, = Vi, =V, 1, [cos g+ cos(2at — 27/3- ¢)]
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1.20

The total instantaneous power is:

Instantaneous three-

phase power for a p = p + pb + p
symmetrical circuit a ¢
is equal to the —

average power, and 3vph I ph Cos ¢

is constant (does (1.42)

not vary with time)! = P

Eq. (1.42) shows that the symmetrical three-phase instantaneous power is
constant and equal to the real power. There is no oscillatory term as in a single-
phase circuit. The property of constant instantaneous power is not unique to the

three-phase system, but applies to poly-phase systems in general.

The constant instantaneous power is a great asset for electrical machines,
facilitating smooth power conversion without vibration. With single-phase
electromechanical power conversion vibration at double the supply frequency

is inevitable.
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Measurement of Three-Phase Power

Using Three Wattmeters

Consider the measurement of the total real power in the network shown below:

3-phase
3-phase 3 unbalanced
supply load
4
i,
O
n
Figure 1.10
Let:
p = total 3-phase instantaneous power supplied to the load
p,, = total instantaneous power seen by the three wattmeters (1.43)
then:
P =V, i, + Vi, +V,
pm = (Va + Vno )ia + (Vb + Vno )Ib + (Vc + Vno )Ic
=V, i, + Vi, + Vi, + Vi,
= P+V,i, (1.44)

Therefore, the sum of the three wattmeter readings is the true average power,

P, of the load only if v i, =0. The method always measures P correctly if
points “0” and “n” are bonded, but if i, =0 (balanced load, or load neutral not

connected), then point “0” may be left floating.
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1.22

Using Two Wattmeters

From the previous section, if i, =0, then v, can be any arbitrary value. So

connect point “0” in Figure 1.10 to point “b”. Now the “b” phase wattmeter

becomes superfluous, as it would always read zero. See the network below:

Pa

3-phase
3-phase p  unbalanced
supply load

Ve —

Figure 1.11

The sum of the remaining two wattmeters now gives the true average power, P.

Therefore P =P, + P, for balanced or unbalanced conditions, if there is no

neutral current.

The phasor diagram, drawn for balanced conditions, is shown below:

Vcb

Figure 1.12
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The two wattmeter readings are:

P, =V, |1.|cos(¢ +30°)

(1.45)
P. =V, I.|cos(s—30°)
but:
’Vab‘ = ’Vcb‘ - \/gvph (1.46)
o =[1e[ =1
hence:
P, =3V, 1 ,.cos(s+30°) w4
P. =+/3V,,1 ,.cos(¢ —30°)
and we obtain:
P, +P. =3V, 1 ,cos¢=P (1.48)
Pc - PA =\/§Vph| phSin¢:%
Therefore:
P=P,+P. W
Q _ \/§(PC . PA) var (1.49)

For measurement of Q the method requires balanced conditions. The signs of

the wattmeter readings are important. Either P, or P. may be negative under

some conditions.
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1.24

Using One Wattmeter and a Switch

In this case, we have one wattmeter whose *“voltage coil” connection is

switched between two phases:

L] a Ia
) sw T Va —
1olo2 i 3-ph
) b b phase
S’Sl%l&i/e i > 1 e  unbalanced
_ load
+ Vp oa
S
+ v —
Figure 1.13

P, and P, are wattmeter readings with switch SW in positions 1 and 2
respectively. The same equations as for the two wattmeters method apply.

This method can only be used when the load is steady.

P=PF+P, wW
Q= \/§(P2 ~P) var (1.50)
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1.25

Power in Non-Linear Loads

If v and i represent periodic waveforms and current, then they can be written

using a compact trigonometric Fourier Series:

k
V=Vye +42)V, cos(nat +a,)

n=1

k
i =1 +v2> 1, cos(nat +4,) (L51)
n=1

Note: V, and I, here are RMS values, not phasors.

Since:
J'02”cos(nx+a)cos(mx+ﬂ)dx =0 if m=n
=rzcosla—p) ifm=n (1.52)
then:
po L ["vidt=p, +3P
_fjo VIAL=Foc +nZ:1: n (1.53)
where:

Pn :ann COS(O!n _ﬂn)
= power in the n -th harmonic (1.54)

If the supply voltage is sinusoidal, and the supply impedance is low, so that
the harmonic current taken by the non-linear load does not cause significant
distortion of the supply voltage, then the only power applied to the load is the
first harmonic (fundamental frequency). i.e. only the fundamental component
of the current is relevant to the power input to the load. Higher harmonic

powers do not exist.

If both voltage and current are distorted, then Eq. (1.53) must be used to

obtain the total power P.
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Summary

Three-phase AC power systems developed rapidly and are now standard

around the world.

A symmetrical three-phase circuit can be analysed as a single-phase circuit.
Delta connections can be converted to star connections to facilitate this

analysis.

Real power in a three-phase AC circuit is given by P =3V, I, cosg.
Reactive power in a three-phase AC circuit is given by Q =3V ;I ,;sing.
Complex power in a three-phase AC circuit is given by S =3V ;| ;h .

Power factor is a measure of how closely a load delivers maximum real

power.

Dissipation factor is a measure of how closely a load presents itself as

lossless.

The instantaneous power in a symmetrical three-phase system is equal to

the average power, p = P. This facilitates smooth power conversion.

Three-phase real power can be measured using just two wattmeters,
regardless of load unbalance, source unbalance, and the waveform of the
periodic source. The measurement of reactive power requires the system to

be balanced.

If voltage and / or current are not sinusoidal, we calculate the total power

by considering the power in each harmonic.
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Exercises

The symmetrical

Evaluate the following expressions in polar form: three-phase power
system

(@) h? -1 (b) 1-h—h" (c) 2h? +3+2h ) jh"

For the delta connected load in Figure 1.5, prove that:
1, =(3zal, 1, =(32a ), 1, =(3zall,
and find the value of « .

Draw a phasor diagram of the six currents and six voltages, assuming a

resistive load.

For the circuit below, calculate:
0] Magnitudes of all currents.

(i) Line voltage at terminals A, B, C.

|1 A |3
Z]_ B , I
C \ 4
| |
220V

3-phase Z,=05+j2Q
balanced Z; Z,=2+j3Q
supply Z,=3-]6Q
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Electrical power in
AC circuits

A capacitor is required to generate 250 kvar at 6.35 kV, 50 Hz. Calculate:

(i) The value of the capacitance
(if) Maximum energy stored in the capacitor.

Show that for a network of two impedances the complex power input to the
network equals the sum of the complex powers absorbed by each impedance,

when:

(i) the impedances are in series
(ii) the impedances are in parallel

A high voltage withstand test is to be applied to the stator winding to ground
insulation of a 660 MW turbo-generator. The capacitance to earth of the
winding (the “test object”) is 273 nF. The specified test voltage is 48 kV,
50 Hz. The dissipation factor of the insulation varies with voltage, but is
expected to be 40 mW/var at 48 kV.

(@) Calculate the real and reactive power output of the HV testing transformer

used to provide the test voltage.

(b) An alternative test circuit uses a variable HV reactor L in series with the
test object C. The reactor is adjusted for resonance at 50 Hz. The

dissipation factor of the reactor is estimated to be 30 mW/var. Determine:

)( (1) The reactance of the reactor.
+

L (i) Power (real and reactive) absorbed

C=— 48kV by the reactor.

_ (ili)  Power input to the circuit.

(iv)  Inputvoltage V| required.
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Two single-phase generators are connected back to back via an inductor
(reactance = 5 Q). The emfs of the generators are as shown, and their internal

impedances are considered negligible.

j50
@TOD\T@ e, =100~/2 cos(1007¢) V
€ €, e, = —100+/2sin(1002 — 7/3) V

o |
o |

Determine the watts and vars supplied or received by each component of the
network.

For the circuit in Exercise 3, calculate the complex power supplied to the total

load from the terminals A, B, C.

A 3-phase transmission circuit has an impedance per phase of 5+ j35Q. The

load at the receiving end consumes 600 kW at unity p.f. and 13.2 kV (line
voltage). Calculate sending end voltage magnitude, real, reactive and apparent

power.

10.

A 3-phase transmission line has an impedance per phase of 5+ j60 Q. At the

sending end the input is 210 MW, 30 Mvar at 220 kV. Find the power and

voltage at the receiving end.

Power Circuit Theory 2011



1.30

11.
A 3-phase generator supplies a load via two parallel circuits A and B, with
impedances j0.7Q and j1.3Q respectively. The load on the generator is

30 MVA at 0.8 lagging power factor, and a terminal voltage of 11 kV. Find the

complex power input and output for each circuit A and B.

12.

A resistor R is connected to lines “a” and “b” of a symmetrical 3-phase supply.
It is suggested that the loading of the supply can be balanced by connecting a

reactor jX across lines “a” and “c”, and a capacitor —jX across “b” and “c”.

(a) Verify that the suggestion is valid, and find the required ratio X/R

(b) Draw an equivalent star circuit (with component values) for the composite

load.

12.

Measurement of
three-phase power For the “one wattmeter and a switch” method of measuring three-phase power,

draw a phasor diagram and prove that P=P +P, and Q = \/§(P2 —P). Give

the total watts and vars respectively.

13.

It is possible to use a single wattmeter to measure vars in a symmetric three-
phase circuit. Draw a circuit to show how this can be done, and find the value
of the calibration constant by which the wattmeter reading has to be multiplied
to obtain total vars. (Hint: Inspect the phasor diagram, and connect the

wattmeter so that is would read zero when the p.f. = 1.)
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