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Lecture 1 – The Electric Power System 

Overview. The symmetrical three-phase power system. Electrical power in AC 
circuits. Measurement of three-phase power Per-unit values of electrical 
quantities. 

Overview 

The modern electric power system is a vast interconnected network of 

components ranging from generators, transformers, transmission lines and a 

wide variety of “loads”. It is important to analyse both the steady-state and 

transient behaviour of such a system in order to make valid decisions about the 

design, operation and protection of such a system. Also, today’s power system 

is increasingly becoming a mixture of power and communications, with 

“intelligent” networks being designed and installed all over the world. 

Combined with the drive towards renewable energy, such a convergence of 

technologies has rejuvenated the area of power systems. 

Early History of Power Systems 

1880 Edison starts full-scale manufacture of DC generators and 
incandescent lamps. 

1882 First power stations built by Edison, using 30 kW 110 V DC 
generators driven by steam engines: 

January: Holborn Viaduct, London. 
September: Pearl St, New York City. Supplied 59 customers. 

Due to the low voltage, the maximum transmission distance was 
limited to about 1.6 km. 

1884 Sprague starts manufacture of DC motors. 

1885 Stanley builds first practical transformer. 

1886 First AC system in operation in Great Barrington, Massachusetts. 
Steam engine driving a Siemens 6 kW 500 V single-phase 
alternator. Power transmitted over a distance of 1.2 km, then 
transformed down to 100 V. 

1888 Tesla builds induction and synchronous machines. (3-phase?) 

1889 First AC line in USA (4 kV, 21 km). (3-phase?) 

1891 First 3-phase line in Germany (12 kV, 179 km). 

Early history of 
power systems 
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Present-Day Power Systems 

Present-day systems are universally three-phase AC (reasons to be discussed 

later), but some large systems incorporate high voltage DC transmission links 

in special circumstances. Where DC is required for an industrial process, 

rectifier plant is used. 

Generator efficiency improves with size. With present technology the optimum 

practical output of steam turbine generators for large-scale generation is 

probably around 600 to 800 MW, and the optimum voltage about 23 kV. 

Transmission voltages (long distance) range from 66 kV to 750 kV and higher. 

High voltage distribution (short to medium distance) voltages range from 2.2 

kV to 132 kV, overlapping the transmission range. 

Most (except very large) consumers receive power at 400 / 230 V (in 

Australia). 

Frequency for public systems has been standardised to 50 Hz in most of the 

world, and 60 Hz in the USA. 

The early power supply systems typically had a single power (generating) 

station supplying a multitude of loads. Some small isolated systems today are 

similar, but large scale present-day public power supply networks have many 

interconnected power stations, and are therefore more difficult to analyse. 
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Notation 

As, more often than not, we will be dealing with complex, rather than real 

values, we will use normal upper case letters to denote complex quantities 

(phasors, impedances, etc.). 

The magnitudes, or absolute values, of the complex quantities will generally be 

indicated by enclosing the upper case letter between vertical bars. There are 

some exceptions to this rule. The most notable exceptions are: 

Vph = RMS magnitude of the phase voltage 

Vline = RMS magnitude of the line voltage 

Iph = RMS magnitude of the phase current 

Iline = RMS magnitude of the line current 

(1.1a) 

(1.1b) 

(1.1c) 

(1.1d) 

Values of AC voltage and current (absolute values, as well as real and 

imaginary components) will be assumed to be RMS (not peak), unless stated 

otherwise. 

For instantaneous values of waveform (voltage, current, power, etc.) we will 

use lower case letters. 

Special margin notes draw attention to some important points. 

Stick to the notation 
in the exam, or 
otherwise indicate 
clearly whether you 
refer to phasors, 
peak value, RMS 
values, 
instantaneous 
values, etc. You will 
lose marks for 
ambiguous notation.
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The Symmetrical Three-Phase Power System 

The Phasor Operator h 

Define: 
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(1.2)  

Though h is defined as a complex constant, it can also be regarded as an 

operator which rotates a phasor by 120  anti-clockwise. Similarly, 1j  is 

an imaginary constant, but can be regarded as an operator which rotates a 

phasor by 90 . 

Alternative symbols for h, found in textbooks, are ‘a’ and ‘ ’. 

From the definition of h, we can easily derive the integer powers of h, and 
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(1.3)

The most important relation containing h is: 

01 2  hh  
(1.4)  

We also have: 
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(1.5)

 

The phasor operator 
h defined 
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Some of these relationships are shown below: 

 

1=h3

h 2

h

-h

-h 2

-1

1- h2

h 2h-

 

 

Figure 1.1 
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Star-Connected Voltage Source 

Consider a simple symmetrical three-phase system, consisting of three voltage 

sources aV  bV  cV  as shown: 
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Figure 1.2 

The terminals a, b, c are the line terminals. The terminal n is the neutral 

terminal. The voltages aV  bV  cV  are the line-to-neutral voltages, which are (in 

the star-connected system) the same as phase voltages. 

Let these be, in phasor notation: 
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Vph = RMS magnitude of the phase voltage (positive real value) 

(1.6)

The phasors ( aV  bV  cV ) are drawn in clockwise order. Rotating in the 

anticlockwise direction the phasors will then present themselves in the correct 

sequence to a stationary observer. 
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Using the operator h: 
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(1.7) 

The phasor diagram in Figure 1.2 is drawn for 0 . The corresponding 

instantaneous voltages are: 
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Figure 1.3 
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(1.8a) 

 

(1.8b) 

 

(1.8c) 

The system is said to have a phase sequence abc. The phases may also be 

identified by three colours, e.g. red, white, blue. In that case red-white-blue 

(formerly red-yellow-blue) is the standard phase sequence. Different colours 

and symbols (e.g. RST) might be used in other parts of the world. 
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The line-to-line voltages, measured between the three pairs of line terminals, 

are: 
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(1.9)

(1.9b)

(1.9c)

and: 

linephacabcab VVVVVV  33  

Vline = RMS magnitude of the line-to-line voltage, usually 

called (somewhat ambiguously), “the line voltage”. 

(1.10)

Thus the line-to-line voltages ( abV  bcV  caV ) have the same sequence as the line-

to-neutral voltages ( aV  bV  cV ), but their magnitudes are multiplied by 3 , and 

they lead the corresponding phase voltages by 30 . 

Similarly: 
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(1.11)

(1.11b)

(1.11c)

Thus the line-to-line voltages ( acV  baV  cbV ) also have the same sequence as the 

line-to-neutral voltages ( aV  bV  cV ), but in this case their phase angles lag the 

phase voltages by 30 . 

By convention the 
nominal voltage of 
the three-phase 
system refers to the 
line-to-line voltage 

Voltage magnitudes 
quoted without 
qualification usually 
are line-to-line 
voltages, or simply 
“line voltages” 
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Star-Connected Load 

Consider a simple symmetrical three-phase system, with three equal load 

impedances connected in a star: 
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Figure 1.4 

The independent voltage sources are as before: 
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(1.12) 

and the three equal load impedances are: 

jXRZ   
(1.13) 
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Obviously, the phase currents (identical to line currents in this case) are: 
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(1.14)

Thus, once the phase “a” current aI  has been calculated, the other two phase 

currents can be obtained by rotating the aI  phasor by 120  increments. 

Since 01 2  hh , the phase currents sum to zero. Therefore, the neutral 

current 0nI , and the neutral connection is redundant. In practice, for reasons 

to be covered later, it may be either omitted or connected, and we talk of 

3-wire and 4-wire systems. 

We also have: 

linephcba IIIII         star connection only 

Iph = RMS magnitude of the phase current 

Iline = RMS magnitude of the line current 

(1.15)
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Delta Connection 

Either the sources or the loads (or both) may also be connected in a loop or 

delta formation. This is illustrated below for a delta connected load: 
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Figure 1.5 

For the delta circuit the line-to-line voltages ( abV  bcV  caV ) are also the phase 

voltages. Thus   linedeltaph VV  . 

The phase currents are ( abI  bcI  caI ) with magnitudes of  
deltaphI . The line 

currents are ( aI  bI  cI ), with magnitudes of  
deltaphline II 3 . 

For every delta connected circuit there is an equivalent star circuit. Because a 

delta circuit has no neutral connections, the reverse is not necessarily true. 

Let ( aV  bV  cV ) be the equivalent star phase voltages. Then: 
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(1.16) 

We can assume both Z  and Z   have the same angle, therefore the equivalent 

star impedance is: 

3

Z
Z


  

 

(1.17)  

To avoid confusion, 
it is generally best to 
convert all delta 
circuits to equivalent 
star circuits for 
network 
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Coupling Between Phases 

In the previous sections we assumed no coupling between the three phase 

impedances Z  (or Z   in case of delta-connected impedances). Now, let us 

assume that we have a symmetrical passive circuit, so that the self-impedances 

of the three phases are equal, and the mutual impedances between phases are 

also equal. 

Let: 
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(1.19)

For symmetrical currents, 0 cba III , therefore: 
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(1.20)

where ms ZZZ   is the effective impedance per phase, or simply “impedance 

per phase”. 

The effective impedance per phase can be measured directly, using three-phase 

currents, or can be calculated, if we know the self and mutual impedances. 

When the term “impedance”, without further qualification, is used in three-

phase work, the effective impedance per phase is generally implied. This 

impedance Z  can be used for calculations in the completely symmetrical case 

only. Eq. (1.19) is more general: although it assumes symmetrical impedances, 

it does not assume symmetrical currents. 

Effective impedance 
defined 
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Electrical Power in AC Circuits 

Power in a Single-Phase Circuit 

Consider the single-phase network shown below: 
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Figure 1.6 

Let: 

 
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(1.21) 

and define: 

   
(1.22) 

Then the instantaneous power input to the network is: 
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(1.23) 
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The second term oscillates at double the supply frequency, and contributes 

nothing to the average power, which is: 

cosIVP   
(1.24)  

Further expanding Eq. (1.23), using   BABABA sinsincoscoscos  , we 

get: 
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(1.25)

Now define the reactive power:  

sinIVQ   (1.26)  

then: 

     22sin22cos1  tQtPp  
(1.27)

The instantaneous power associated with the real and reactive power 

components is shown below: 
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Figure 1.7 

P is the average 
value of p, not the 
RMS value, which 
has no useful 
meaning in this 
case, despite the 
widespread 
(mis)use of the term 
“RMS power” in the 
hi-fi industry 

Reactive power 
defined 
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Using phasors, we define complex power: 

*VIS   (1.28)  

Corresponding to Eq. (1.21), we have: 
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and we have: 

 





sincos

*

jIV

IV

IVVI







 

 

 

(1.30) 

Hence the complex power is: 

VA)(complex * jQPSVIS   (1.31)  

where: 

(VA)powerapparent  IVS  

(W)power realcos  SP  

(var)power reactivesin  SQ  

 = angle by which the voltage V leads the current I 

222
QPS   

 

 

(1.32)  

Complex power 
defined 

Components of 
complex power 

Real power is also 
known as active 
power and average 
power 
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These relationships are illustrated below: 
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Figure 1.8 

If the network (load) has an impedance Z , then ZIV  , and: 

2** IZZIIVIS   
(1.33)

If the network (load) has an admittance Y , then YVI  , and: 

2**** VYYVVVIS   
(1.34)

It can be shown that the total complex power jQPS   consumed by a 

network is the sum of the complex powers consumed by all the component 

parts of the network. This conservation property is not true of the apparent 

power S . 
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Power Factor and Dissipation Factor 

We define: 

cos(p.f.)factor Power 
S

P
 

 

(1.35)  

and: 

tanfactor n Dissipatio 
Q

P
d

 

where   90 = loss angle 

 

(1.36)  

Power factor is normally applied to useful power system loads where the ideal 

is to maximise real power. 

Dissipation factor is used with inductors, capacitors, and insulating materials, 

where the ideal is to minimise real power dissipation. 

“Quality factor” = 1d , commonly called “Q”, is not to be confused with the 

reactive power, Q. 

Power factor defined

Dissipation factor 
defined 
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Power in a Three-Phase Circuit 

Complex Power 

Because the complex power jQPS   in any circuit is equal to the sum of 

the complex powers in parts of the circuit, the complex power of a symmetrical 

three-phase circuit must be equal to the sum of the powers in each phase. In the 

case of the symmetrical system this is three times the power in each phase: 
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phph
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
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(1.37)  

where phV  and phI  are RMS magnitudes of voltage and current per phase, and 

  is the angle by which the phase voltage leads the phase current. 

Eqs. (1.37) converted to use line current and line voltage read: 
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(1.38)  

The apparent power is 22 QPS   as for the single-phase case. 

Three-phase power 
for a symmetrical 
circuit using phase 
quantities 

Three-phase power 
for a symmetrical 
circuit using line 
quantities 
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Instantaneous Power 

Consider the simple symmetrical three-phase system shown below: 
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Figure 1.9 

Using phase “a” voltage as the time reference, i.e. setting 0  in Eq. (1.21), 

we get: 
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(1.39) 

The instantaneous power in each phase is: 
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Using    BABABA  coscoscoscos2 , we expand: 
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The total instantaneous power is: 

P

IV

pppp

phph
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


cos3
 

 

(1.42)  

Eq. (1.42) shows that the symmetrical three-phase instantaneous power is 

constant and equal to the real power. There is no oscillatory term as in a single-

phase circuit. The property of constant instantaneous power is not unique to the 

three-phase system, but applies to poly-phase systems in general. 

The constant instantaneous power is a great asset for electrical machines, 

facilitating smooth power conversion without vibration. With single-phase 

electromechanical power conversion vibration at double the supply frequency 

is inevitable. 

Instantaneous three-
phase power for a 
symmetrical circuit 
is equal to the 
average power, and 
is constant (does 
not vary with time)! 
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Measurement of Three-Phase Power 

Using Three Wattmeters 

Consider the measurement of the total real power in the network shown below: 

 

a

b

c

n

av

in

ic

ib

ia

vb

vc

vno

3-phase
supply

3-phase
unbalanced

load

o  

 

Figure 1.10 

Let: 

p  = total 3-phase instantaneous power supplied to the load 

mp  = total instantaneous power seen by the three wattmeters 

 

(1.43) 

then: 

     

nno

nnoccbbaa

cnocbnobanoam

ccbbaa

ivp

iviviviv

ivvivvivvp

ivivivp







 

 

 

(1.44) 

Therefore, the sum of the three wattmeter readings is the true average power, 

P, of the load only if 0nnoiv . The method always measures P correctly if 

points “o” and “n” are bonded, but if 0ni  (balanced load, or load neutral not 

connected), then point “o” may be left floating. 
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Using Two Wattmeters 

From the previous section, if 0ni , then nov  can be any arbitrary value. So 

connect point “o” in Figure 1.10 to point “b”. Now the “b” phase wattmeter 

becomes superfluous, as it would always read zero. See the network below: 
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3-phase
unbalanced

load

PA

PC

 

 

Figure 1.11 

The sum of the remaining two wattmeters now gives the true average power, P. 

Therefore CA PPP   for balanced or unbalanced conditions, if there is no 

neutral current.  

The phasor diagram, drawn for balanced conditions, is shown below: 

 

Va

Vb

Vc Vab

Vcb

 

30

Ia



 - 30
30

Ib

Ic

 

 

Figure 1.12 
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The two wattmeter readings are: 

 
 



30cos

30cos





ccbC

aabA

IVP

IVP
 

 

(1.45) 

but: 

phca

phcbab

III

VVV



 3
 

 

(1.46) 

hence: 

 
 



30cos3

30cos3





phphC

phphA

IVP

IVP

 

 

(1.47) 

and we obtain: 

3
sin3

cos3

Q
IVPP

PIVPP

phphAC

phphCA









 

(1.48) 

Therefore: 

  var3

W

AC

CA

PPQ

PPP




 

 

(1.49)  

For measurement of Q the method requires balanced conditions. The signs of 

the wattmeter readings are important. Either AP  or CP  may be negative under 

some conditions. 
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Using One Wattmeter and a Switch 

In this case, we have one wattmeter whose “voltage coil” connection is 

switched between two phases: 
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Figure 1.13 

1P  and 2P  are wattmeter readings with switch SW in positions 1 and 2 

respectively.  The same equations as for the two wattmeters method apply. 

This method can only be used when the load is steady. 

  var3

W

12

21

PPQ

PPP




 

 

(1.50)
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Power in Non-Linear Loads 

If v  and i  represent periodic waveforms and current, then they can be written 

using a compact trigonometric Fourier Series: 

 

 











k

n
nnDC

k

n
nnDC

tnIIi

tnVVv

1

1

cos2

cos2





 

 

 

(1.51) 

Note: nV  and nI  here are RMS values, not phasors. 

Since: 

   
  nm

nmdxmxnx




 ifcos

 if0coscos
2

0






 
 

(1.52) 

then: 





k

n
nDC

T
PPvidt

T
P

1
0

0

01
 

 

(1.53)  

where: 

 
harmonicth - in thepower 

cos

n

IVP nnnnn


 

 

 

(1.54) 

If the supply voltage is sinusoidal, and the supply impedance is low, so that 

the harmonic current taken by the non-linear load does not cause significant 

distortion of the supply voltage, then the only power applied to the load is the 

first harmonic (fundamental frequency). i.e. only the fundamental component 

of the current is relevant to the power input to the load. Higher harmonic 

powers do not exist. 

If both voltage and current are distorted, then Eq. (1.53) must be used to 

obtain the total power P. 
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Summary 

 Three-phase AC power systems developed rapidly and are now standard 

around the world. 

 A symmetrical three-phase circuit can be analysed as a single-phase circuit. 

Delta connections can be converted to star connections to facilitate this 

analysis. 

 Real power in a three-phase AC circuit is given by cos3 phphIVP  . 

 Reactive power in a three-phase AC circuit is given by sin3 phphIVQ  . 

 Complex power in a three-phase AC circuit is given by *3 phphIVS  . 

 Power factor is a measure of how closely a load delivers maximum real 

power. 

 Dissipation factor is a measure of how closely a load presents itself as 

lossless. 

 The instantaneous power in a symmetrical three-phase system is equal to 

the average power, Pp  . This facilitates smooth power conversion. 

 Three-phase real power can be measured using just two wattmeters, 

regardless of load unbalance, source unbalance, and the waveform of the 

periodic source. The measurement of reactive power requires the system to 

be balanced. 

 If voltage and / or current are not sinusoidal, we calculate the total power 

by considering the power in each harmonic. 

References 
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Exercises 

1. 

Evaluate the following expressions in polar form: 

(a) 12 h  (b) *1 hh    (c) hh 232 2   (d) *jh  

2. 

For the delta connected load in Figure 1.5, prove that: 

  aba II  3     bcb II  3    cac II  3  

and find the value of  . 

Draw a phasor diagram of the six currents and six voltages, assuming a 

resistive load.  

3. 

For the circuit below, calculate: 

(i) Magnitudes of all currents. 

(ii) Line voltage at terminals A, B, C. 

220 V

I1 A

Z 1

Z 2

B

C

Z 4

I4

I3

3-phase
balanced
supply

Z 1 = 0.5 +   2j 
Z 2 = 2 +   3j 
Z 4 = 3 -   6j 

 

The symmetrical 
three-phase power 
system 
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4. 

A capacitor is required to generate 250 kvar at 6.35 kV, 50 Hz. Calculate: 

(i) The value of the capacitance 

(ii) Maximum energy stored in the capacitor. 

5. 

Show that for a network of two impedances the complex power input to the 

network equals the sum of the complex powers absorbed by each impedance, 

when: 

(i) the impedances are in series 

(ii) the impedances are in parallel 

6. 

A high voltage withstand test is to be applied to the stator winding to ground 

insulation of a 660 MW turbo-generator. The capacitance to earth of the 

winding (the “test object”) is 273 nF. The specified test voltage is 48 kV, 

50 Hz. The dissipation factor of the insulation varies with voltage, but is 

expected to be 40 mW/var at 48 kV. 

(a) Calculate the real and reactive power output of the HV testing transformer 

used to provide the test voltage. 

(b) An alternative test circuit uses a variable HV reactor L in series with the 

test object C. The reactor is adjusted for resonance at 50 Hz. The 

dissipation factor of the reactor is estimated to be 30 mW/var. Determine: 

L
C 48 kVV1

 

(i) The reactance of the reactor. 

(ii) Power (real and reactive) absorbed 

by the reactor. 

(iii) Power input to the circuit. 

(iv) Input voltage 1V  required. 

Electrical power in 
AC circuits 
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7. 

Two single-phase generators are connected back to back via an inductor 

(reactance = 5 ). The emfs of the generators are as shown, and their internal 

impedances are considered negligible. 

e1 e2

j5 

 

 

 te 100cos21001   V 

 3100sin21002   te  V 

Determine the watts and vars supplied or received by each component of the 

network. 

8. 

For the circuit in Exercise 3, calculate the complex power supplied to the total 

load from the terminals A, B, C. 

9. 

A 3-phase transmission circuit has an impedance per phase of   355 j . The 

load at the receiving end consumes 600 kW at unity p.f. and 13.2 kV (line 

voltage). Calculate sending end voltage magnitude, real, reactive and apparent 

power. 

10. 

A 3-phase transmission line has an impedance per phase of   605 j . At the 

sending end the input is 210 MW, 30 Mvar at 220 kV. Find the power and 

voltage at the receiving end. 
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11. 

A 3-phase generator supplies a load via two parallel circuits A and B, with 

impedances  7.0j  and  3.1j  respectively. The load on the generator is 

30 MVA at 0.8 lagging power factor, and a terminal voltage of 11 kV. Find the 

complex power input and output for each circuit A and B. 

12. 

A resistor R is connected to lines “a” and “b” of a symmetrical 3-phase supply. 

It is suggested that the loading of the supply can be balanced by connecting a 

reactor jX across lines “a” and “c”, and a capacitor –jX across “b” and “c”. 

(a) Verify that the suggestion is valid, and find the required ratio RX  

(b) Draw an equivalent star circuit (with component values) for the composite 

load. 

12. 

For the “one wattmeter and a switch” method of measuring three-phase power, 

draw a phasor diagram and prove that 21 PPP   and  123 PPQ  . Give 

the total watts and vars respectively. 

13. 

It is possible to use a single wattmeter to measure vars in a symmetric three-

phase circuit. Draw a circuit to show how this can be done, and find the value 

of the calibration constant by which the wattmeter reading has to be multiplied 

to obtain total vars. (Hint: Inspect the phasor diagram, and connect the 

wattmeter so that is would read zero when the p.f. = 1.) 

 

Measurement of 
three-phase power 


