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Lecture 5 – Transmission Line Parameters 

Capacitance of overhead transmission lines. Inductance of overhead 
transmission lines. Calculation of geometric mean distances. Resistance of 
overhead transmission lines. Parameters of underground transmission lines. 

Capacitance of Overhead Transmission Lines 

Capacitances of a Multiconductor Transmission Line Running Parallel to an 

Earth Plane 

(a) Line Charge 

Assume an infinitely long horizontal line charge above a horizontal conducting 

“earth” plane. 
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Figure 5.1 – Line charge above an earth plane 

The earth plane (at 0y ) is at zero potential. For determining the electric 

field in the space above the plane ( 0y ) we replace the plane with an image 

line charge. 
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Figure 5.2 – Field plot of line charge with image  

Let: 

  = line charge density in coulombs per metre (Cm-1) 

h = height of the line charge above the earth plane 

(5.1)

(5.2)

By Gauss’ Law, the electric field vector at the radial distance r from a line 

charge in free space is: 
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To obtain potential V we integrate along path l: 
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(5.4) 

Now set 0V  at hr   to obtain the potential at point P due to the positive 

charge alone: 
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(5.5) 

This is best illustrated by the diagram below: 
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Figure 5.3 – Reference potential at distance h 

Using superposition, we can add the potential due to the negative image charge 

to obtain the potential at point P with respect to the earth plane: 
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The electric field components in the x and y direction are: 
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Hence: 
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At 0y : 
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(5.9)

 0,xEy  corresponds to an induced surface charge density s  on the earth 

plane: 
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Integrating to obtain the total induced surface charge: 
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(5.11) 

Thus the actual induced surface charge per unit length (  ) equals the 

fictitious image charge per unit length, and exactly balances the inducing line 

charge per unit length  . 
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(b) Single Conductor 

It can be shown that the equipotential surfaces near the line charge in (a) above 

are cylinders, and when the radius of the cylinder is much smaller than the 

distance h, the axis of the equipotential cylinder very nearly coincides with the 

line charge. 

Hence the line charge model is valid for a long cylindrical conductor of radius 

R, and when hR   the line charge and the conductor may be assumed to be 

coaxial. In these cases, applying Eq. (5.6) to a single isolated conductor we 

obtain the conductor potential: 
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The capacitance per unit length (conductor to earth) is then: 
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(c) Multiple Conductors 

We can describe the charge / voltage relations of a set of n parallel conductors 

by an n x n matrix P of Maxwell’s potential coefficients: 

PλV   
  (5.14) 

where: 

V = line voltage column vector (V)  

 = charge density column vector (Cm-1) 

(5.15) 

(5.16) 

From Eq. (5.6) we let: 
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(5.18) 

(The conductor spacing is assumed to be large compared to the diameters). 
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Figure 5.4 – Multiple conductors above an earth plane 

For the diagonal elements ji  , and from Eq. (5.12):  

iRd iii conductor  of radius  

ihD iii conductor  ofheight  double2   

(5.19)

(5.20)

The inverse of P is the capacitance per unit length matrix: 

11
0 Fm2  AC   

  (5.21)
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Example 

Two conductors of 10 mm diameter, conductor 1 is 5 m above ground, 

conductor 2 is 1 m higher and directly above conductor 1. Determine the 

capacitance matrix and an equivalent circuit of the conductor capacitances. 

Solution: 
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The equivalent network is shown below: 
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(d) Bundle Conductors 

Bundle conductors are made up of a number of parallel, usually identical, sub-

conductors. Bundle conductors may be used to increase the current carrying 

capacity, to lower the inductance, or to reduce the electric stress at the surface 

of the conductor. The last reason is the most common for high voltage 

transmission lines of 220 kV and above. 

Consider a conductor a made up of m sub-conductors. All sub-conductors are 

at the same potential aV , hence from Eq. (5.14): 
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(5.22)

Assume the total charge density a  is divided equally between the m sub-

conductors (a fair approximation in most cases). Then, from the first row, we 

obtain: 
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We get slightly different values from the 1m  remaining rows, but taking all 

rows into the account we finally arrive at: 
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(5.26) 

aaD  and aad  are geometric mean distances (GMD). 

aaD  = mutual GMD between the bundle conductor a and its image 

aad  = self-GMD of the bundle conductor a 

m = number of sub-conductors in the bundle 

aad  is also known as the “geometric mean radius” (GMR) of the conductor. 

The description “geometric mean radius” is mathematically incorrect, but it is 

the equivalent radius of a simple cylindrical conductor that would have the 

same capacitance as the bundle conductor. 
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Eq. (5.24) is identical to Eq. (5.12) with h2  and R  replaced with 

corresponding geometric mean distances. We can extend the principle to the 

multiconductor transmission line in which each conductor consists of n parallel 

sub-conductors. Then the distances ijD  and ijd in Eq. (5.18) become geometric 

mean distances as follows: 

ijD  = mutual GMD between the bundle conductor i and the image of j 

ijd  = mutual GMD between the bundle conductors i and j 

Example 

Two conductors, conductor 1 is 5 m above ground, conductor 2 is 1 m higher 

and directly above conductor 1, as in the previous example. Both conductors 

are connected in parallel. Determine the capacitance to earth. 

Solution: 

1) From the solution of the previous example: 

-1pFm 29.1493.636.7 C  

2) Treating the two conductors as a single bundle conductor: 
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(almost the same as the centre line distance of 11 m) 
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Capacitances of a Three-Phase Overhead Transmission Line 

We will assume a simple transmission line with just three conductors labelled 

a, b and c. We assume all conductors to be identical, except for their position 

in space. Image conductors at a depth equal to the conductor height are 

assumed. 
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Figure 5.5 – Three-phase transmission line and its image 

cabcab DDD  , ,  = mutual GMDs between conductor and image of another  

     conductor 

ccbbaa DDD  , ,  = mutual GMDs between conductor and its own image 

cabcab ddd  , ,  = mutual GMDs between conductors 

ccbbaa ddd  , ,  = self-GMD of conductor (radius of a cylindrical conductor) 

For the mutual GMDs centre-line distances are usually sufficient as an 

approximation. 
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Ideally the conductors are transposed so that each conductor occupies all three 

positions in equal proportions over the length of the transmission line, as 

illustrated below: 
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Figure 5.6 – A “barrel” of transpositions 

For the first (LH) section of the “barrel” we obtain the potential coefficients 

from Eq. (5.17): 
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(5.28)

The values in the matrix are rotated for the other two sections. Thus, for the 

complete transposed line: 
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The diagonal and non-diagonal elements respectively are: 
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(5.30) 

 

 

 

(5.31) 

Applying the symmetrical component transformation, we get: 
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where: 
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and: 
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Now: 
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(5.35)

Inverting 1P  we obtain the positive (and negative) sequence capacitance per 

unit length: 
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where: 

3
cabcabeq dddd  = “equivalent spacing” 

(5.37)

When the conductor spacing is very small compared to the height from the 

ground, then 
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We could find the zero sequence capacitance per unit length 0C  by using 

ms PPP 20   but there is an easier way. The capacitance per unit length to 

earth of all three conductors in parallel 03C , hence the zero sequence 

capacitance per unit length is: 
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where: 
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and: 
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= self-GMD of the three conductors in parallel 
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Inductance of Overhead Transmission Lines 

Inductances of a Multiconductor Transmission Line Running Parallel to an 

Earth Plane 

(a) Single Conductor Near a Perfectly Conducting Earth 

Assume an infinitely long horizontal thin conductor at hy   above a 

horizontal perfectly conducting “earth” plane at 0y . 
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Figure 5.7 – Single conductor above an earth plane 

Alternating flux cannot exist in a perfect conductor, suggesting an effective 

permeability of zero. Then we can, with some justification, try using an image 

current of equal magnitude and opposite direction. We replace the plane with 

the image current at hy  , and calculate the resultant magnetic field in the 

region 0y . 

From Ampère’s Law, the magnetic field vector at the radial distance r from the 

conductor is directed clockwise and has a magnitude: 
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At 0y  the horizontal and vertical components of H, due to the conductor 

and the image, are: 
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(5.43) 

xH  is actually discontinuous at 0y . Neither B nor H can exist inside the 

perfect earth conductor (whatever the permeability might actually be). The 

discontinuity has to be accounted for by a surface current density equal to xH . 

The total surface current is: 
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(5.44) 

Thus, there is a return current in the earth’s surface under the conductor, and 

our rather dubious adoption of the method of images appears to be vindicated. 

Flux linking the conductor per unit length is: 
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where R = conductor radius (there is no flux inside a perfect conductor). 

Hence: 
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Since IL  , the inductance per unit length of the conductor with perfect 

earth return is: 
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(b) Multiple Conductors Near a Perfectly Conducting Earth 

Assume a second conductor, not carrying any current, at point P. The first 

conductor at  h,0  carries current I. 
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Figure 5.8 – Multiple conductors above an earth plane 

The flux per unit length linking the second conductor is: 
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The mutual inductance per unit length is then: 
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The similarity of form between the formulae for inductance per unit length and 

potential coefficients is obvious, and we can now set up the inductance per unit 

length matrix for the ideal multiconductor transmission line: 
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  (5.50)

where A is identical to the matrix used in the calculation of potential 

coefficients. 
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(c) Practical Conductors 

With practical conductors the current is not confined to the surface, but 

diffuses exponentially some distance into the conductor. We define the “skin 

depth”: 

m
2


 

 

  (5.51) 

where: 

  = resistivity (Ωm ) 

  = angular frequency (rads-1) 

 = permeability ( 0r ) of the conductor material 

       ( 1r  for copper and aluminium) 

(5.52) 

(5.53) 

(5.54) 

At 50 Hz and usual operating temperatures, the skin depth is about 10 mm for 

copper, and 13 mm for aluminium. Exact calculation of the current distribution 

in a cylindrical conductors requires Bessel functions, but for practical purposes 

we may assume uniform current distribution if the conductor radius is less than 

the skin depth. 

The flux inside the conductor, only partially linked to the current, contributes 

an additional self-inductance to each conductor. Mutual inductances are not 

affected. It can be shown that for sold cylindrical conductors and uniform 

current distribution this “internal inductance” per unit length is a small fixed 

value equal to: 

1-0
internal Hm05.0

8





L  

 

 (5.55) 

regardless of size (for a proof, refer to the prescribed textbook, or others). 
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From Eq. (5.50), the self-inductance per unit length is given by: 

ii

ii
ii d

D
L ln

2
0





 (5.56)

where we have hDii 2  and Rdii   for an ideal conductor (zero skin depth). 

For the low frequency real conductor with uniform current distribution: 
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(5.57)

Therefore Eq. (5.56) is also valid for the real conductor if we use:  

RRedii 778.04

1




 (5.58)

This equation gives the self-GMD of a solid cylindrical conductor with 

uniform current distribution. 

 

Note that there is a difference in the meaning of the GMDs used 

in inductance and capacitance calculations. In capacitance 

calculation we need the GMD between surface charge densities, 

while in inductance calculation we need the GMD between the 

current densities. The numerical difference is quite significant 

for the self-GMDs, but usually insignificant for mutual GMDs. 

Furthermore, with relatively large spacing between conductors 

the mutual GMDs may often be replaced with the corresponding 

centre-line distances. 
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(d) Real Earth 

The problem of self and mutual impedances of parallel conductors with earth 

return was solved independently, and almost simultaneously, by Pollaczek and 

Carson in 1926. The finite resistivity of the earth causes the earth return 

currents (surface currents in an ideal earth) to penetrate well below the surface. 

The effect of this penetration is equivalent to increasing the image distances 

iiD  and ijD  and thereby increase all inductances (self and mutual). At the low 

frequencies and typical conductor heights of power lines the effective values of 

iiD  and ijD  are much larger than double conductor height and approach the 

“equivalent depth of earth return” ED . 

The self and mutual inductances per unit length of the conductors thus become: 

1-0 Hmln
2 ij

E
ij d

D
L





 

 

 (5.59) 

where: 

f
DE


659   (m) 

  = resistivity of earth (Ωm ) 

f  = frequency (Hz) 

iid = self-GMD of current distribution of conductor i 

ijd = mutual GMD between conductors i and j 

(5.60) 

 

(5.61) 

(5.62) 

(5.63) 

(5.64) 
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Eq. (5.60) is valid only at low frequencies. The proof is too difficult to be 

included here. The equivalent depth of earth return ED  is directly related to the 

skin depth  : 

31.1ED  
(5.65)

Values of ED  

Values of Earth Resistivity Depth of Earth Return 

Typical 10 to 1000 Ωm  m 3000  to300ED  

Extremes: Rock, up to 10 000Ωm  m 9000ED  

Sea water, down to 0.25 Ωm  m 47ED  

Typical values of ED  are seen to be much larger than the ideal earth image 

distances ( h2 ). 
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Inductances of a Three-Phase Overhead Transmission Line 

Assume we are dealing with real earth, so that the image conductors may be 

placed at the equivalent depth of earth return ED . Also assume line height and 

all lateral dimensions are ED , al three conductors are identical, and the line 

is transposed. 

 

a

c

Distant images

Conductors
b

Earth

 

 

Figure 5.9 – Three-phase transmission line and its image 

Then the self-inductance per unit length of each conductor is: 
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 (5.66) 

The three equal mutual inductances per unit length are: 
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 (5.67) 

where eqd = “equivalent spacing” previously defined in Eq. (5.37). 
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The positive, negative and zero sequence inductances per unit length are: 
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(5.68)

Hence: 
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and: 
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(5.70)

Hence: 

1-

3

0
0 Hmln
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L





  (5.71)

where 

  3 29

1
222

3 eqaacabcabccbbaac ddddddddd   

= self-GMD of the three conductors in parallel 

(5.72)

The cd3  used in Eq. (5.72) is formally similar to the corresponding cd3  used 

for capacitance calculation in Eq. (5.39), but the numerical values  are different 

because different values of aad  are used. 
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Calculation of Geometric Mean Distances 

The concept of geometric mean distance (GMD) is intimately connected with 

the calculation of transmission line capacitances and inductances. 

Generally, the geometric mean of n values of x is: 

nn

i
ix
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1








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(5.73) 

The “equivalent spacing” of three-phase transmission line conductors: 

3
cabcabeq dddd  = “equivalent spacing” 

(5.74) 

is a GMD of the above simple type. 

We can evaluate the self-GMD of the cross-section area of any shape 

conductor (with uniform current density) by dividing the area into n equal 

elements (sub-areas), and calculate the geometric mean of the 2n  possible 

distances. The required GMD is then the limit value when n . 

We can calculate the mutual GMD between two cross-section areas by dividing 

the first area into n elements, and the second areas into m elements, then 

calculate the  geometric mean of the mn  possible distances. The required 

GMD is then the limit value when both n  and m . 

The mutual GMD between two areas with circular symmetry is their centre-

line spacing. 

Previous equations Eq. (5.25) and Eq. (5.26) cover the calculation of the self- 

and mutual GMDs of bundle conductors. 
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Examples of Self-GMD 

Geometry Self-GMD 

Circular contour, radius R R  

Circular area, radius R 
Re 4

1


 

Rectangular area ba   ba  2235.0  

 

Note of caution: The above concept of GMDs breaks down when there is a 

significant proximity effect, or a significant skin effect. 

Proximity effect causes both current and surface charge 

densities to be non-uniform. Skin effect causes non-

uniform current density in conductors of large cross-

section. 
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Example 

Calculate the self-GMD of the cross-section of a stranded conductor composed 

of seven wires of radius r.  

5 4
7 3

21
6

6r
 

Distances in multiples of strand radius r: 

cases 64

cases 1232

cases 242

cases 7

2514

2413

2312

4

1
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
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dd
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4 b 2 a 2 b 2

b 4 b 2 a 2 2

2 b 4 b 2 a 2

2 2 2 2 2 2 a
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2
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Distance matrix 

Answer: 
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Example 

Calculate the capacitance and inductance per metre of a single-phase 50 Hz 

transmission line using four copper conductors, 10 mm diameter, arranged at 

the corners of a 500 mm square with polarities as shown. 

r d

d

 

 

mm 5r    mm 500d  

 

For a simple 2-conductor transmission line remote from the earth: 

R
D

C
ln

0
   

sd

D
L ln0




  

where: 

R = radius of conductor 

D = distance between conductors 

Reds
4

1


  

(Prove the above formula using Eq. (5.13), Eq. (5.56) and Eq. (5.58)) 

Conceptually we have only two conductors, each made up of two sub-

conductors. Subconductor spacing is d2 . 

Geometric mean conductor spacing is   mm 5004

1
22  dddD . 
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For inductance: 

   mm 47.520495.122 4

1

8

14

1

2
2

4

1
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For capacitance: 

  mm 46.591892.122 4

1
4

1
22 



 RdRddRds  

Then: 

1-pFm 06.13
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Example 

Calculate the positive and zero sequence inductances per metre of a three-

phase 50 Hz transmission line with conductors spaced at 2.7 m in a flat 

horizontal arrangement. Each conductor consists of seven strands of 3 mm 

diameter copper wire. The equivalent depth of earth return is given as 1300 m. 

m 402.34.57.27.23 eqd  

From the result of the first GMD example: 

mm 266.35.1177.2 aad  

Then: 

1-7
1 μHm 39.1

266.3

3402
ln102  L  

We also have: 

m 3356.0402.3266.33 23 2
3  eqaac ddd  

Then: 
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3
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0 μHm 957.4
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Resistance of Overhead Transmission Lines 

Resistances of a Multiconductor Transmission Line Near the Surface of 

Earth 

Apart from conductor resistance the earth return resistance needs to be 

considered. Assume a general n-conductor transmission line near a real earth 

surface. As with capacitance and inductance, we can set up an nn  matrix of 

loop resistances. The earth return resistance appears in all elements of the 

matrix, but the conductor resistances only in the diagonal elements. 

At low frequencies this earth return resistance has been shown to be: 

Hz 50at mm 3.49

m10
8

1-

1-720



 fRE 

 

 

 (5.75) 

Eq. (5.75) is a low frequency approximation valid over the range in which the 

equivalent depth of earth return is much greater than the height or lateral 

spread of the conductors. The surprising feature is that the earth return 

resistance is independent of the resistivity of the earth! The inductance depends 

on the resistivity, but the resistance does not. The qualitative explanation is: 

the skin depth increases proportional to the square root of the resistivity, and so 

does the lateral spread of the earth return current. Therefore the effective cross-

section of the earth return path increases in proportion with the resistivity, and 

the resistance remains constant. At high frequencies however the lateral spread 

is fixed, with the net result that the earth return resistance is proportional to the 

square root of frequency at high frequencies. 

The resistance matrix has diagonal elements: 

iEii RRR   
(5.76) 
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and non-diagonal elements: 

Eij RR   
(5.77)

where: 

iR  = internal resistance per unit length of conductor i 
(5.78)

The Resistances of a Three-Phase Power Transmission Line 

A transmission line can have both series and shunt components of resistance. 

For the purpose of network analysis the shunt components (insulator leakage, 

corona, etc.) can usually be neglected. The series components however are 

significant. 

The effective series resistance must account for all losses of real power that are 

proportional to the square of the current. Thus power dissipated by induced 

currents in earth, earth wires, structural steelwork, etc. as well as power 

dissipated in the conductor itself would have to be accounted for in the 

effective series resistance. In case of practical power lines  carrying only 

positive or negative sequence currents these stray effects are generally 

negligible, but not necessarily so in case of zero sequence currents. 

The earth return resistance ER  cancels out for positive and negative sequences. 

Thus the positive sequence resistance is near enough just the conductor 

resistance, allowing for skin effect when necessary. 

The sequence resistance are: 

Ea

a

RRR

RR

30

1




 
 (5.79)

where aR  = conductor (internal) resistance per metre, and ER  is defined in 

Eq. (5.75). 
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Parameters of Underground Transmission Lines 

Without going into details of the design of various types of underground power 

cable, it suffices to say at this point that the inductances are smaller, roughly 

25% to 50% of the inductance of an overhead transmission line. The 

capacitances of the underground cable are some 25 to 70 times higher than 

overhead line. 
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Summary 

 The “method of images” is used to determine the capacitance and 

inductance per unit length of infinitely long overhead transmission lines. 

This method assumes an ideal earth plane. 

 The formulae for inductance and capacitance per unit length utilise the 

concept of a geometric mean distance (GMD). The GMD can handle the 

cases of bundle conductors and multiple circuits (e.g. three-phase). 

 Inductance calculations need to take into account skin depth and the finite 

resistance of the earth, giving rise to the concept of “equivalent depth of 

earth return”. In addition, there is a fixed contribution to the overall 

inductance by the “internal inductance”. These complications are not 

present for capacitance calculations.  

 Resistance calculations need to take into account all loss mechanisms of 

the transmission line, not just the losses due to conduction. 

References 

Carmo, J.: Power Circuit Theory Notes, UTS, 1994. 

Truupold, E.: Power Circuit Theory Notes, UTS, 1993. 
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Exercises 

1. 

Calculate the capacitance per metre of a long horizontal conductor suspended 

at a height of 10 m above the earth’s surface for the following options: 

(a) A cylindrical conductor, 25 mm diameter. 

(b) A cylindrical conductor, 500 mm diameter. 

(c) A bundle conductor comprising six 25 mm diameter cylindrical sub-

conductors with their centres spaced evenly on a 500 mm diameter circle. 

2. 

A double-circuit three-phase transmission line is constructed so that its six 

conductors are placed at the corners of a regular hexagon with side length of 

two metres. The conductors are cylindrical and 20 mm in diameter. There are 

no transpositions. 

Figure A

a

b

c

c

b

a

Circuit 1 Circuit 2

Figure B

a

b

c c

b

a

Circuit 1 Circuit 2

 

(a) Calculate the line inductance (positive sequence) of circuit 1 with circuit 2 

open-circuited. 

(b) Calculate the inductance of the two circuits in parallel as in Figure A. 

(c) Calculate the inductance of the two circuits in parallel as in Figure B. 

(d) Figure A is the better arrangement. Why? (There are two reasons.) 
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3. 

A 132 kV three-phase urban transmission line has conductors arranged as 

shown. The line is transposed, and the conductors have a radius of 10 mm. 

1.5 m power line

1.5 m

6 m

 

 

Determine the positive sequence 

inductance  and capacitance per metre. 

Can the proximity of the earth be 

ignored? 

4. 

An earth fault occurs on a three-phase transmission line. The fault current is 

5000 A, the frequency is 50 Hz. The line is not provided with any earth wires. 

A wire fence runs for a distance of 1 km parallel to and 30 m from the line. 

Calculate the longitudinal induced voltage in the fence, assuming the earth to 

have a uniform resistivity of 250 Ωm. Is the answer realistic? 

5. 

A telephone line runs parallel to a three-phase power line carrying 500 A 

symmetrical currents. The frequency is 50 Hz. Neither line is transposed. 

Relevant dimensions are as shown: 

20 m

5 m

1 m

telephone
line

untransposed

6 m6 m

power line
untransposed

 

Calculate the voltage induced into the telephone line (loop voltage). 
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6. 

An underground three-phase high voltage cable consists of three conductors, 

each 12 mm diameter. Each conductor is surrounded with a coaxial metallic 

sheath, with a 24 mm inside diameter. The insulation between the conductor 

and the sheath has a relative permittivity of 2.5. The centre-line distances 

between all three conductors are 50 mm. The sheaths are connected to earth, 

and are cross-bonded (transposed) so that no positive sequence currents are 

induced in them. 

sheath

r = 2.5

50 mm50 mm

50 mm

outer
shield

 

Calculate the positive sequence capacitance and inductance per metre. 




