Exercises

1.

The sub-system shown below consists of a $132 / 33 \mathrm{kV}$ transformer feeding into a 33 kV cable, 10 km long. The zero sequence capacitance of the cable is $330 \mathrm{pF} / \mathrm{m}$. The series impedance of the cable and the transformer impedances are negligible in the context of this problem. The line voltage at the end of the cable is 33 kV .

Calculate the magnitude of the earth fault current at point P for:
(a) the circuit as shown.
(b) the 33 kV neutral open-circuited.
(This exercise illustrates the principle of Petersen coil earthing.)
2.

In the power sub-system shown, the voltage magnitudes on Bus K and Bus L are 1.04 and 1.00 p.u. respectively. The over-excited synchronous motor consumes 3 MW and supplies 3 Mvar to Bus L.

A single-phase line-to-earth fault occurs at the mid-point of Feeder 2. Assuming zero fault impedance, and neglecting all resistances, calculate the following quantities (in amperes or volts) for the duration of the fault:
(a) the fault current
(b) all transformer neutral currents
(c) Generator 1 line currents
(d) circulating current in the delta winding of Transformer 3
(e) synchronous motor equivalent-star phase voltages

7.18

System Data for Q2

All reactances are given on 100 MVA and nominal voltage bases.

Neutral earthing: Transformer 2 floating, all others solidly earthed.

Feeder 1:	66 kV	$X_{1}=0.185$ p.u.	$X_{0}=1.00 \mathrm{p} . \mathrm{u}$
$\underline{\text { Feeder 2: }}$	66 kV	$X_{1}=0.185$ p.u.	$X_{0}=1.00$ p.u
Feeder 3:	220 kV	$X_{1}=0.17 \mathrm{p} . \mathrm{u}$.	$X_{0}=0.92$ p.u
Transf. 1:	15 MVA	V / 6.6 kV , YNd11	$X_{1}=0.42$ p.u
Transf. 2:	5 MVA ,	/ 6.6 kV , Yd11	$X_{1}=1.50$ p.u.
Transf. 3:	100 MV	kV / $22 \mathrm{kV} / 11 \mathrm{kV}$	YN, yn, d1
Positive sequence reactances:			$X_{H V}=0.165$
			$X_{L V}=-0.00$
			$X_{T V}=0.159 \mathrm{p}$
Zero sequence reactances:			$X_{H V}=0.127$
			$X_{L V}=0.0099$
			$X_{T V}=0.120 \mathrm{p}$

Generator 1: $\quad 15 \mathrm{MVA}, 6.6 \mathrm{kV} \quad X_{d}^{\prime}=1.7$ p.u. $\quad X_{2}=1.4$ p.u.

Generator 2: \quad Represents the remainder of the system (very large). Assume impedances are negligble

Synch. motor: $\quad 5$ MVA, $6.6 \mathrm{kV} \quad X_{d}^{\prime}=8.0$ p.u. $\quad X_{2}=4.5 \mathrm{p} . \mathrm{u}$

