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Transient Stability
Transient stability refers to the ability of a synchronous generator connected to the grid to main-
tain synchronism when subjected to severe disturbances due to heavy load changes, loss of gen-
eration in other units or faults in the system. When there is a sudden disturbance, the machine
rotor starts to oscillate about its equilibrium position. These oscillations are modeled using swing
equation.

1 Swing equation
When there is an unbalance between mechanical torque (Tm) and electrical torque (Te), it will
cause the rotor to accelerate or decelerate. The difference in the torque (Ta) is given by,

Ta = Tm − Te

J
dωm

dt
= Tm − Te (1)

where J is the moment of inertia of the rotor in kg.m2 and ωm is the angular velocity of the rotor
in rad/s. Equation (1) can be normalised as follows:
Defining inertia constant H as

H =
1

2

Jω0m
2

V Abase

J =
2HV Abase

ω0m
2

=
2H

ω0mTbase

(2)

where Tbase = V Abase

ω0m
. Combining (1) and (2) we get,

2H
d

dt

(
ωm

ω0m

)
=

Tm − Te

Tbase

2H
dω̃r

dt
= T̃m − T̃e (3)

where the variables superscripted with ˜ indicates per unit quantities and ωm

ω0m
= ωr

ω0
= ω̃r and

ωr is the velocity of the rotor in electrical rad/s and ω0 is its rated value.
If δ is the angular position of the rotor with respect to the rotating reference frame,

δ = ωrt− ω0t + δ0 (4)

where δ0 = δ at t = 0. Differentiating (4) twice with respect to time,

dδ

dt
= ωr − ω0 = ∆ωr (5)

d2δ

dt2
=

d (∆ωr)

dt
=

d

dt
(ω0ω̃r − ω0) (6)

d2δ

dt2
= ω0

dω̃r

dt
(7)
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Substituting in (3),

2H

ω0

d2δ

dt2
= T̃m − T̃e (8)

To include the rotor damping effects, we include rotor damping constant KD and proportional to
change in speed and we have,

2H

ω0

d2δ

dt2
= T̃m − T̃e −KD∆ω̃r (9)

Equation (9) is known as swing equation. In pu representation, torque and power are equal, so
we can represent (9) as,

2H

ω0

d2δ

dt2
= P̃m − P̃e −KD∆ω̃r (10)

2 Single machine on infinite bus (SMIB) model
Infinite bus is the one with constant frequency and voltage. Consider a generator G connected to
infinite bus through a transformer and a transmission line as shown in Figure 1(a). The reactance
of the line Xline, transformer Xtrans and the transient reactance X ′

d are indicated in Figure 1(b).
E ′ is the generator voltage behind X ′

d and Ebus is the infinite bus voltage. Generator voltage E ′

leads the Ebus by an angle δ. The given network can be reduced as shown in Figure 1(c) where
XT = X ′

d + Xtrans + Xline.
Let E ′ be the reference vector, the current It is given by,

It =
E ′∠0− Ebus∠−δ

XT

=
E ′∠0− Ebus (cos δ −  sin δ)

XT

(11)

Apparent power behind X ′
d is given by,

S ′ = P + Q = E ′It
∗

=
E ′Ebus sin δ

XT

+ 
E ′ (E ′ − Ebus cos δ)

XT

(12)

If we neglect the stator resistance loss, the airgap power will be the terminal power Pe.

Pe =
E ′Ebus

XT

sin δ

= Pmax sin δ (13)

where Pmax = E′Ebus

XT
. Equation (13) is diagrammatically represented in Figure 2. Under steady
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Figure 1: Single machine on infinite bus system

state Pm = Pe, and let the corresponding rotor angle be δ. From (13), Pmax is inversely propor-
tional to XT . With XT increased to XT1, Pmax reduces to Pmax1 as shown in Figure 2 and also
the steady state angle δ increases to δ1.

Combining (8) and (13) we get,

2H

ω0

d2δ

dt2
= Pm − Pmax sin δ (14)

2.1 Rotor angle response to sudden change in Pm

When the mechanical power Pm is increased to Pm1 as shown in Figure 5, since Pm1 > Pe, rotor
accelerates increasing rotor angle towards δ1. At y, Pm1 = Pe, but the rotor speed is higher than
the synchronous speed ω0 and so the rotor angle continues to increase. This will increase Pe,
now since Pm1 < Pe, rotor will start decelerate. At z with δ2, rotor speed reaches syn.speed but
still Pm1 < Pe rotor continues to decelerate with speed falling below ω0. The rotor retraces the
path, after reaching x the rotor continues to oscillate about the new equilibrium point δ1
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Figure 2: Power angle curve

2.2 Equivalent single machine system
We can represent a system consisting of many generators operating in parallel by an equivalent
single machine system.
Find the equivalent single machine system of the following multimachine systems.

1. Each machine 30 kVA, H = 6 s, xd’ = 0.25 pu. (Refer Figure 3).

2. G1 = 30 kVA, H1 = 6 s, xd1’ = 0.25 pu and G2 = 60 kVA, H2 = 4 s, xd2’ = 0.3 pu (Refer
Figure 4).

3 Stability based on equal area criterion
Using SMIB model, the stability of rotor angle oscillations can be determined graphically with-
out solving the swing equations. Even though this method cannot be applied to multimachine
systems, it can provide basic understanding and information about critical clearing angle and
stability limits.

From equation (14) we have

d2δ

dt2
=

ω0

2H
(Pm − Pe) (15)
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Figure 3: 3 M/C system

Figure 4: 2 M/C system

Multiplying by 2dδ
dt

,

2
dδ

dt

d2δ

dt2
=

ω0

2H
(Pm − Pe) 2

dδ

dt

d

dt

(
dδ

dt

)2

=
ω0

H
(Pm − Pe)

dδ

dt
(16)

Integrating (16) we get, (
dδ

dt

)2

=

∫
ω0

H
(Pm − Pe) dδ (17)

Under steady state conditions dδ
dt

= 0, during disturbance δ will be changed, but after the
removal of disturbance the system should regain steady state conditions without δ deviating
unboundedly. For stability equation (17) should be equal to zero i.e,∫ δ2

δ0

ω0

H
(Pm − Pe) dδ = 0 (18)
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Figure 5: Rotor angle oscillations

where δ0 is the steady state rotor angle, δ2 is the maximum rotor angle (see Figure 5). For the
equation (18) to be zero, the area described by the function Pm − Pe must be zero. From Figure
5, the kinetic energy gained is given by area A1 and is given by,

A1 =

∫ δ1

δ0

(Pm − Pe) dδ (19)

The energy lost during deceleration is given by the area A2 and is given by,

A2 =

∫ δ2

δ1

(Pm − Pe) dδ (20)

for stability,

Area A1 = Area A2 (21)
i.e, kinetic energy gained = energy lost during deceleration

Equation (21) represents the principle of stability through equal area criterion.

3.1 Stability during sudden input power change
For sudden change in input power stability can be found by using the stability criteria given by
(21). Stability can be maintained only if we can find area A2 in the power angle curve such that
(21) is satisfied. The maximum rotor angle δmax is given by the rotor angle corresponding to Pm

for which π
2

< δ > π as shown in Figure 6.
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Figure 6: Power angle curve for sudden change in Pm

Using (13) and (21) we can write,

Pm (δ1 − δ0)−
∫ δ1

δ0

Pmax sin δ dδ =

∫ δmax

δ1

Pmax sin δ dδ − Pm (δmax − δ1) (22)

On simplification,

Pm (δmax − δ0) = Pmax

[
(− cos δ)δ1

δ0
+ (− cos δ)δmax

δ1

]
= Pmax (cos δ0 − cos δmax) (23)

At stability limit Pm = Pmax sin δmax, substituting in (23),

sin δmax (δmax − δ0) + cos δmax = cos δ0 (24)

Equation (24) is a nonlinear equation which can be solved by iterative technique to get δmax.
With δmax known we can find δ1 and Pm as follows:

δ1 = π − δmax and Pm = Pmax sin δ1 (25)

3.2 Stability during 3 phase fault
Fault at sending end. When fault occurs near the sending end as in Figure 7, no power is send
to the infinite bus. If we neglect the resistance of transformer and generator Pe is zero during
fault. Since Pe is zero, Pm is used to accelerate rotor and this increases rotor angle to δ1. At
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Figure 7: Fault at the sending end

δ1, the fault is cleared and Pe takes the value corresponding to y as shown in Figure 8(a). At y
since Pe < Pm, rotor decelerates to z and then returns back to x and starts to oscillate about δ0.
Critical clearing angle δc is reached when area A2 becomes less than A1 [see Figure 8(b)] and at
z the rotor angle becomes δmax.
Using (21)

Pm (δc − δ0) =

∫ δmax

δc

(Pmax sin δ − Pm) dδ

= Pmax (cos δc − cos δmax)− Pm (δmax − δc)

Pm (δmax − δ0) = Pmax cos δc − Pmax cos δmax (26)

solving for δc,

δc = cos−1

[
cos δmax +

Pm

Pmax

(δmax − δ0)

]
(27)

To find the critical time tc, substitute Pe = 0 in (15),

d2δ

dt2
=

ω0

2H
Pm (28)

Integrating both sides from time 0 to t we get,

dδ

dt
=

ω0

2H
Pmt

δ =
ω0

4H
Pmt2 + δ0 (29)

at δ = δmax, t = tc, substituting in (29),

tc =

√
4H (δmax − δ0)

ω0Pm

(30)
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Figure 8: Power angle curve for fault at sending end

4 Numerical Example
Let us consider a 50 Hz single machine on infinite bus system. The machine is connected to
infinite bus through a transformer and a transmission line. The system data is included in the
Figure 9. A temporary 3 phase fault occurs at sending end and the system is restored back to
normal after fault clearance. Find the critical clearing angle and critical clearing time above
which the system will become unstable.

9



Figure 9: Power system for numerical example.

Generator Current IG =
0.9− 0.08

1∠0
= 0.9− 0.08 pu

Total reactance XT1 = 0.25 + 0.25 +
0.35

2
= 0.6750 pu

Generator voltage behind x′
d, Eq = Vbus − IGXT1 = 1∠0 + 0.6750× (0.9− 0.08)

= 1.2165∠29.9581 pu

Initial power angle δ0 = sin−1

(
PeXT1

EqVbus

)
= 29.95810

Maximum power angle δmax = 180− δ0 = 150.0419

Critical clearing angle δc = cos−1

[
cos δmax +

Pm

Pmax

(δmax − δ0)

]
= 79.61800

Critical clearing time tc =

√
4H (δmax − δ0)

ω0Pm

= 0.2712 s

10



Figure 10: Power angle curve for the numerical example.
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