

MATLAB is a registered trademark of The MathWorks, Inc.

48540
Signals and Systems

MATLAB
®
 Tutorial

2015

% sample time & sample rate

Ts=2e-6;

fs=1/Ts;

% number of samples

N=1000;

% time window & FFT sample spacing

To=N*Ts;

fo=1/To;

% time and frequency vectors

t=0:Ts:To-Ts;

f=-fs/2:fo:fs/2-fo;

PMcL

t

T0

Ts

M.1

PMcL Contents Index

2015 MATLAB® – A Tutorial

MATLAB
®
 – A Tutorial

Contents

Introduction .. M.3

1.1 Invoking MATLAB .. M.3

1.2 Entering Simple Statements .. M.4

1.3 Formatting Output .. M.5

1.4 Entering Simple Vectors ... M.6

1.5 Entering Simple Matrices ... M.7

1.6 Generating Vectors ... M.8

1.7 M-Files: Scripts and Functions ... M.9

1.8 Scripts ... M.9

1.9 Functions .. M.9

1.10 Creating a Script ... M.10

1.11 Debugging your Script.. M.11

1.12 Clearing the Workspace .. M.12

1.13 Using Vectors in Functions .. M.12

1.14 Plotting.. M.13

1.15 Help .. M.14

1.16 Plotting on a New Figure .. M.14

1.17 Changing Figure Numbers .. M.15

1.18 Clearing Old Figures .. M.15

1.19 Script Comments .. M.15

1.20 Changing the Plot Axes .. M.17

1.21 Adding Axis Labels .. M.17

1.22 Adding a Plot Title ... M.17

1.23 Creating Subplots ... M.17

1.24 Functions .. M.18

1.25 Creating a Graph Function ... M.20

1.26 Vector Operations ... M.22

1.27 The FFT .. M.26

1.28 FFT Samples ... M.27

M.2

Index Contents PMcL

MATLAB® – A Tutorial 2015

1.29 Time-Domain Samples ...M.28

1.30 Frequency-Domain Samples ...M.29

1.31 Plotting a Magnitude Spectrum ..M.30

1.32 Finishing Your MATLAB Session ...M.33

M.3

PMcL Introduction Index

2015 MATLAB® – A Tutorial

Introduction

MATLAB is a technical computing environment for high-performance numeric

computation and visualization. MATLAB integrates numerical analysis, matrix

computation, signal processing and graphics in an easy-to-use environment

where problems and solutions are expressed just as they are written

mathematically – without traditional programming.

The name MATLAB stands for matrix laboratory. It is an interactive system

whose basic data element is a matrix that does not require dimensioning. This

allows you to solve many numerical problems in a fraction of the time it would

take to write a program in a language such as C.

In university environments, it has become the standard instructional tool for

engineering courses that involve numeric computation, algorithm prototyping,

and special purpose problem solving with matrix formulations that arise in

disciplines such as automatic control theory and digital signal processing. In

industrial settings, MATLAB is used for research and to solve practical

engineering and mathematical problems.

MATLAB also features a family of application-specific collections of

functions called toolboxes. These extend the MATLAB environment in order

to solve particular classes of problems. Areas in which toolboxes are available

include signal processing, control systems design, dynamic systems simulation,

systems identification, neural networks, and others.

1.1 Invoking MATLAB

Start MATLAB like any other Windows
®
 program. You will see a Command

Window appear with the MATLAB prompt >>. At this point the MATLAB

interpreter is awaiting instructions from you.

MATLAB is now a
standard package at
universities and in
industry

M.4

Index Entering Simple Statements PMcL

MATLAB® – A Tutorial 2015

1.2 Entering Simple Statements

If you just type an expression (and press the Enter key), such as:

1900/81

then MATLAB assigns the answer to the ans variable and displays:

ans =

 23.4568

To assign a result to your own variable, you enter a statement such as:

Ts=2

MATLAB will respond with:

Ts =

 2

Note in the right pane titled Workspace that Ts has appeared, with a value and

a range. MATLAB has “evaluated” the statement you typed of the form:

variable = expression

and returned the result to you on the screen. It has also created an internal

variable called Ts that it now “knows” about which can be used in later

expressions.

MATLAB allows complex numbers, indicated by the special functions i and

j, in all its operations and functions. Engineers prefer:

z=3+4j

whilst mathematicians prefer:

z=3+4i

Note that i and j appear after a constant. Another example is:

w=5*exp(j*0.9273)

Note that the mathematical quantity e is represented by exp.

MATLAB will always display the output using i.

w =

 3.0000 + 4.0000i

Entering a
statement

MATLAB supports
complex numbers

M.5

PMcL Formatting Output Index

2015 MATLAB® – A Tutorial

1.3 Formatting Output

You can use the format command to control the numeric display format. The

format command affects only how matrices display, not how they are

computed or saved. The default format, called the short format, shows

approximately five significant digits. The other formats show more significant

digits or use scientific notation.

Push the ↑ (up-arrow) to recall the previous command and edit it so that it says:

Ts=0.002

and press Enter.

Now enter:

format long

Ts

The resulting output is:

Ts =

 0.00200000000000

Type:

format short e

Ts

The resulting output is:

Ts =

 2.0000e-003

Type:

format short

to return the formatting to the default state.

To suppress output to the screen append a semicolon, ;, to your statement.

Ts=0.002;

produces no output.

Changing the output
format

The semicolon, ;,

suppresses output

M.6

Index Entering Simple Vectors PMcL

MATLAB® – A Tutorial 2015

1.4 Entering Simple Vectors

To enter a row vector, surround the elements by brackets, []. For example,

entering the statement:

t = [0 1 2]

results in the output:

t =

 0 1 2

To make a column vector explicitly, separate elements with a semicolon, ;.

Entering:

t = [0; 1; 2;]

results in the output:

t =

 0

 1

 2

You can also use the single quote, ', to transpose a vector:

t = [0 1 2]'

results in the output:

t =

 0

 1

 2

Matrix elements can be any expression, for example:

x = [-1.3 sqrt(3) (1+2+3)*4/5]

results in:

x =

 -1.3000 1.7321 4.8000

Enter simple row
vectors by
separating values
with spaces

Enter simple column
vectors by
separating values
with semicolons

Use a single quote,

', to transpose a

vector

M.7

PMcL Entering Simple Matrices Index

2015 MATLAB® – A Tutorial

1.5 Entering Simple Matrices

To enter a matrix, surround the elements by brackets, [], separate columns

by spaces, and rows by semicolons. For example, entering the statement:

A=[1 2 3; 4 5 6; 7 8 9]

results in:

A =

 1 2 3

 4 5 6

 7 8 9

Individual matrix elements can be referenced with indices inside parentheses,

(). Continuing the example:

A(3,4)=10

produces:

A =

 1 2 3 0

 4 5 6 0

 7 8 9 10

Notice the size of A is automatically increased to accommodate the new

element and that the undefined intervening elements are set to zero. The

indexing is of the form (row, column).

Two convenient ways to enter complex matrices are:

A=[1 2; 3 4] + j*[5 6; 7 8]

and

A=[1+5j 2+6j; 3+7j 4+8j]

When you enter complex numbers as matrix elements within brackets, it is

important to avoid any blank spaces. An expression like 1 + 5j, with blanks

surrounding the + sign, represents two separate numbers. This is also true for

real numbers; a blank before the exponent, as in 1.23 e-4, causes an error.

Enter simple
matrices by
separating values
with spaces and
semicolons

Numbers should not
have spaces when
entering values

M.8

Index Generating Vectors PMcL

MATLAB® – A Tutorial 2015

1.6 Generating Vectors

The colon, :, is an important character in MATLAB. The statement:

t=1:5

generates a row vector containing the numbers from 1 to 5 with unit

increments. It produces:

t =

 1 2 3 4 5

You can use increments other than one:

y=0:pi/4:pi

results in:

y =

 0 0.7854 1.5708 2.3562 3.1416

Negative increments are possible.

z=6:-1:1

gives:

z =

 6 5 4 3 2 1

You can form large vectors from small vectors by surrounding the small

vectors with brackets, []. For example, entering the statement:

x=[t y z]

produces a vector which is just the concatenation of the three smaller vectors t,

y and z.

Now lets create a simple time vector:

Ts=2e-3

To=2

t=0:Ts:To

The output is quite large since we have created a vector with 1001 elements.

Press the ↑ (up-arrow) and append a semicolon to the last line to suppress the

output. Note that MATLAB is case-sensitive and T0, TO and To are different.

Generate a vector
with start and end
values using a
colon, :, …

… and also specify
the increment

M.9

PMcL M-Files: Scripts and Functions Index

2015 MATLAB® – A Tutorial

1.7 M-Files: Scripts and Functions

MATLAB starts in a command-driven mode; when you enter single-line

commands, MATLAB processes them immediately and displays the results.

MATLAB can also execute sequences of commands that are stored in files.

MATLAB is thus an interpretive environment.

Files that contain MATLAB statements are called M-files because they have a

.m file extension. An M-file consists of a sequence of normal MATLAB

statements, which possibly include references to other M-files. You can create

M-files using a text editor.

Two types of M-files can be used: scripts and functions. Scripts automate long

sequences of commands. Functions provide extensibility to MATLAB. They

allow you to add new functions to the existing functions.

1.8 Scripts

When a script is invoked, MATLAB simply executes the commands found in

the file. The statements in a script operate globally on the data in the

workspace. Scripts are useful for performing analyses, solving problems, or

designing long sequences of commands that become cumbersome to do

interactively.

1.9 Functions

An M-file that contains the word function at the beginning of the first line

is a function. A function differs from a script in that arguments may be passed,

and variables defined and manipulated inside the file are local to the function

and do not operate globally on the workspace. Functions are useful for

extending MATLAB, that is, creating new MATLAB functions using the

MATLAB language.

M-files defined

Scripts defined

Functions defined

M.10

Index Creating a Script PMcL

MATLAB® – A Tutorial 2015

1.10 Creating a Script

Click on the New Script icon () in the toolbar of the HOME ribbon:

MATLAB’s internal M-file ASCII text editor will open. It has line numbers on

the left and supports colour syntax highlighting.

Now type in:

Ts=2e-3;

To=2;

t=0:Ts:To;

Click on the save icon () and give your M-file the name Lab2.m. When

naming M-files, it is important to follow an 8.3 file notation, with no spaces,

otherwise MATLAB cannot read them. You should also not use names which

may be predefined functions; for example, do not save a script as sin.m.

To execute your script, simply press the F5 key. This is the Debug | Save

and Run shortcut key. If you Alt+Tab back to the MATLAB Command

Window, you will see Lab2 on the command line showing that the Lab2 script

was executed, but no other output – this is because we suppressed output using

semicolons at the end of each line. To ensure that things are working, remove

the last semicolon in your M-file and hit F5. You should now see the output.

Add a semicolon back to the last line, as we are normally not interested in the

output of such a trivial operation.

Creating a new
M-file

M-file filename
restrictions

Use F5 to Save and
Run a script

M.11

PMcL Debugging your Script Index

2015 MATLAB® – A Tutorial

1.11 Debugging your Script

You can set breakpoints in your script to facilitate debugging. Just click on the

dash (-) next to the line number where you want the breakpoint. You can

toggle the breakpoint on and off by clicking. Change line 3 so that

To (T-small o) is replaced with T0 (T-zero):

t=0:Ts:T0;

Click on the dash next to line 3:

to put a breakpoint on line 3. Press F5 and you should see a green arrow at the

statement that is about to be executed:

You can use the icons in the toolbar or keyboard shortcuts to step into, over,

etc. Press F10, which is the shortcut key for Step. MATLAB tries to execute

line 3 (which results in an error) and shows a green down arrow indicating that

there is a problem. You can click on the Quit Debugging icon () in the top

right of the toolbar to terminate the debug session and see what is wrong.

The editor doesn’t give you feedback on the error, but the Command Window

does, in a red font:

Undefined function or variable ‘T0’.

Error in Lab2 (line 3)

t=0:Ts:T0;

When things don’t appear to be working, remember to check for any messages

in the MATLAB Command Window.

Correct the error by reverting T0 back to To, and toggle the breakpoint off.

Setting a breakpoint

Stepping through
the script

Errors appear in the
Command Window

M.12

Index Clearing the Workspace PMcL

MATLAB® – A Tutorial 2015

1.12 Clearing the Workspace

Make a new line 1 (just type at the start of line 1) and add the statement:

clear all;

This will clear the workspace of all variables and provide a “clean slate” for

your script. Press F5 and observe the MATLAB Workspace pane. It should

have cleared away all the previous variables you had defined and created just

the variables that are defined in your script file.

1.13 Using Vectors in Functions

Passing vectors as a single parameter to a function, and having functions return

vectors, is a powerful feature of MATLAB. After line 4, type:

f1=1000;

g=cos(2*pi*f1*t);

Leave a space so that your script looks like:

Notice that we are adhering to good programming practice. Blank lines are

used to separate portions of code, and constants are given meaningful names

(f1 in this case) so they are easy to change later on. The constant pi is already

pre-defined by MATLAB for us.

This script should have created a sinusoid in the variable g. To graphically see

this, we will use MATLAB’s powerful graphing capability.

Clearing the
workspace

Functions take
vectors and return
vectors

M.13

PMcL Plotting Index

2015 MATLAB® – A Tutorial

1.14 Plotting

Add line 9 (leave line 8 blank) with the statement:

plot(t,g);

This statement will make a plot of one vector versus another vector (in this

case a plot of g vs. t). MATLAB handles the rest for us. Press F5 and

MATLAB opens up a new window titled Figure 1. We should see a sinusoid…

…but we don’t, we only see a straight line. To check what is going on, we

Alt+Tab to the Command Window and type g to look at the contents of the g

vector. Sure enough, the plot command is working correctly, but our g vector

only has elements of value 1.

Realizing that our mistake is setting up a time vector so that individual

elements (or time samples) correspond exactly to the peaks of the

1000 Hz sinusoid, we change line 2 to read:

Ts=2e-4;

and press F5. We should see a sinusoid…

…but we don’t, we see a filled-in rectangle. Thinking a bit more, we realise

that the plot is working, but we are looking at 2000 cycles of a 1000 Hz

waveform! We decide to graph just 2 cycles, so we change line 3 to read:

To=2e-3;

and press F5. We should see a sinusoid…

…but we don’t, we see a piece-wise linear waveform. MATLAB just joins the

dots, and it appears as though our time samples are not spaced “fine enough” to

capture the smoothness of a real sinusoid. Change line 2 to read:

Ts=2e-5;

and press F5. We see a sinusoid at last!

Remember that we need to set up our vectors carefully, and that to obtain

smooth looking waveforms, we need to “sample” quite fast.

Plotting is performed

with the plot

function

Graph smoothness
depends on the
sample spacing

M.14

Index Help PMcL

MATLAB® – A Tutorial 2015

1.15 Help

You can press F1 at any time to invoke MATLAB’s help. Sometimes a more

convenient way to get help is to use the help function, which is invoked from

the Command Window. For example, type:

help square

and press Enter. MATLAB returns with help on the square function

(which is really just an M-file function). Many functions can take a variable

number of arguments, and it is important that you read about the various

options of calling a function. Functions can also return numbers, vectors, arrays

of vectors, and even plot things automatically.

1.16 Plotting on a New Figure

By appending code to your Lab2.m file, see if you can create a new vector

called s which contains a 20% duty cycle, 10 kHz square wave that goes

between 0 and 1 on the vertical scale:

t

1

0-0.1 0.1 0.2

0.02

(ms)

s

You should read the help on the square function carefully. Conform to good

programming practice by defining the frequency of the square wave as:

fc=10e3;

Plot the newly created s vector by adding the lines:

figure;

plot(t,s);

to the end of your script. The figure command will create a blank figure,

which is then acted upon by the next plot command.

Make sure you “sample” fast enough to capture the edges of the square wave –

you may have to change Ts to 2e-6.

Getting help on a
MATLAB function

Plotting on a new
figure

M.15

PMcL Changing Figure Numbers Index

2015 MATLAB® – A Tutorial

1.17 Changing Figure Numbers

If you run your script repeatedly by pressing F5 a few times, you will see that

the figure function creates a new figure all the time, without closing old

ones. We can pass an argument to the figure function to prevent this from

happening. Change the line with figure so that it reads:

figure(2);

Press F5 and see that the square wave is now graphed on Figure 2, and no new

figures are created.

1.18 Clearing Old Figures

There are still some old figures open that we would like to close. MATLAB

can do this for us, and it is good practice to close all figures before we begin

running a script to avoid confusion – we like to start with a “clean slate”. On

line 2, add the statement:

close all;

and press F5. This closes all open figures. Add the line:

figure(1);

before your first plot statement. Although not necessary, since the first plot is

put on Figure 1 by default, it makes your script more readable.

1.19 Script Comments

Conforming to good programming practice means that you should comment

your script appropriately. This lets others (and you) understand what the script

is intending to do.

MATLAB comments are lines that begin with the percent, %, sign.

Go through your script file and add some simple but appropriate comments.

Changing figure
numbers

Closing old figures

Adding script
comments

M.16

Index Script Comments PMcL

MATLAB® – A Tutorial 2015

Your script should now look something like:

% ======================================

% My first MATLAB M-file

% by PMcL

% ======================================

% clear everything

clear all;

close all;

% sample time

Ts=2e-6;

% time window

To=2e-3;

% time vector

t=0:Ts:To;

% a sinusoid

f1=1000;

g=cos(2*pi*f1*t);

figure(1);

plot(t,g);

% a square wave

fc=10e3;

s=(square(2*pi*fc*t,20)+1)/2;

figure(2);

plot(t,s);

The script is looking good, but it’s time to fix up those figures – we can’t see

the square wave particularly well, and we’d like to graph the two functions on

the same figure for comparison purposes.

M.17

PMcL Changing the Plot Axes Index

2015 MATLAB® – A Tutorial

1.20 Changing the Plot Axes

Get help on the axis function (not the axes function, which is very

different). The axis function is applied after the plot function. Add lines to

your script so that each figure is plotted from 0 to 2e-3 horizontally and

-2 to 2 vertically. Don’t forget that MATLAB can take vectors as arguments

to functions. For example:

TimeAxes=[0 2e-3 -2 2];

...

axis(TimeAxes);

1.21 Adding Axis Labels

All plots need appropriate axis labels. Use the following lines as a guide and

add labels to each of your plots:

xlabel('t (s)');

ylabel('g(t)');

1.22 Adding a Plot Title

All plots need an appropriate title. Use the following line as a guide and add a

title to each of your plots:

title('a sinusoid');

1.23 Creating Subplots

To get plots to lie on one figure, we use the subplot function. Type help

subplot and make your plots appear on just Figure 1, with the sinusoid on

top, as shown below:

Changing the
plot axes

Adding labels to a
plot

Adding a title to a
plot

Creating subplots

M.18

Index Functions PMcL

MATLAB® – A Tutorial 2015

1.24 Functions

The best way to learn about functions is to look at an example. Suppose an

M-file called mean.m contains the following statements:

function y = mean(x)

% MEAN Average or mean value.

% For vectors, MEAN(x) returns the mean value.

% For matrices, MEAN(x) is a row vector

% containing the mean value of each column.

 [m,n] = size(x);

 if m == 1

 m = n;

 end

 y = sum(x)/m;

end

The existence of this file defines a new function called mean. The new

function mean is used just like any other MATLAB function. For example, if

z is a vector of the integers from 1 to 99:

z = 1:99;

the mean value is found by typing:

mean(z)

which results in:

ans =

 50

An example
MATLAB function
showing the internal
structure

M.19

PMcL Functions Index

2015 MATLAB® – A Tutorial

Here are some details of mean.m:

 The first line declares the function name, the input arguments, and the

output arguments. Without this line, the file is a script file instead of a

function file.

 The first few lines document the M-file and display when you type

help mean.

 The variables m, n and y are local to mean and do not exist in the

workspace after mean has finished (or, if they previously existed, they

remain unchanged).

 It was not necessary to put the integers from 1 to 99 in a variable with

the name x. In fact, we used mean with a variable called z. The vector

z that contained the integers from 1 to 99 was passed or copied into

mean where it became a local variable named x.

You can create a slightly more complicated version of mean, called stat, that

also calculates standard deviation:

function [mean,stdev] = stat(x)

 [m,n] = size(x);

 if m == 1

 m = n;

 end

 mean = sum(x)/m;

 stdev = sqrt(sum(x.^2)/m – mean.^2);

end

stat illustrates that it is possible to return multiple output arguments.

The first line of a
function M-file must
declare the
function…

…then comes the
help comments…

…then comes the
function body

Function parameters
are formal variables
and are replaced
with actual variables
when called

An example
MATLAB function
that returns a vector

M.20

Index Creating a Graph Function PMcL

MATLAB® – A Tutorial 2015

1.25 Creating a Graph Function

Observing good programming practice, we now look to remove duplicate code

from our script and create a function instead. Looking at our script, we see that

the plotting code appears to repeat, except with different parameters passed to

the various plotting functions. Let’s create a graph function that will do the

plotting for us and make our code easier to read, use and maintain.

Functions are just M-files, but MATLAB will create a function template if you

click on the NewFunction menu item in the toolbar of the HOME ribbon:

MATLAB creates a function template in the editor, that you can now

customise. A similar command exists in the toolbar of the EDITOR ribbon of the

M-File editor:

Create MATLAB
functions to remove
duplicate code

M.21

PMcL Creating a Graph Function Index

2015 MATLAB® – A Tutorial

You will get a function template that looks like:

Now edit it to create a new M-File function called graph.m that looks like:

function graph(Fg,Sub,x,y,Ax,XL,YL,TL)

%GRAPH Makes a subplot on a particular figure.

% GRAPH(Fg,Sub,x,y,Ax,XL,YL,TL) makes a subplot

% on a figure using the following parameters

% Fg specifies the figure number.

% Sub specifies the subplot coordinates.

% x specifies the horizontal vector.

% y specifies the vertical vector.

% Ax specifies a vector containing the axes.

% XL specifies the x-axis label.

% YL specifies the y-axis label.

% TL specifies the subplot title.

end

Notice that the function has no output arguments. Fill out the rest of the

function to perform the desired action of plotting on a particular subplot (use

your existing plotting code in your Lab2.m script as a guide). Make sure that

you save the function M-file with the same name as the function, i.e. as

graph.m. After your function is created, your Lab2.m script should be

modified to use it, for example:

graph(1,211,t,g,TimeAxes,'t(s)','g(t)','a sinusoid');

In the Command Window, test the help for your function by typing help

graph. Test your new function by running your modified Lab2.m script.

M.22

Index Vector Operations PMcL

MATLAB® – A Tutorial 2015

1.26 Vector Operations

One of MATLAB’s attractions is that it operates on vectors in a natural

manner. For example, the line:

g=cos(2*pi*f1*t);

takes a linear input vector, t, and creates a sinusoidal output vector, g. We

don’t have to program any loops to iterate through each individual element of

the t vector to create the g vector – “MATLAB does it behind the scenes”.

This “abstraction” of operations into vector operations makes for very intuitive

code, like the line above. But sometimes we have to be careful, as we will see

next.

Let’s create a new waveform, called gs which is to be obtained by multiplying

the signals g and s. Add the following code to your Lab2.m script:

% a sampled sinusoid

gs=g*s;

graph(1,313,t,gs,TimeAxes,'t (s)','gs(t)','gs');

Also, change your other graph functions so they have subplot numbers of

311 and 312 (we now want to have 3 subplots, in one column). Press F5 to

run your code.

The third subplot does not appear, and on investigating the Command Window,

we see why – we have an error:

Error using *_

Inner matrix dimensions must agree.

Error in Lab2 (line 32)

gs=g*s;

It appears as though the error is occurring in a hidden function called ‘*’.

Type help * to see what this function does. It turns out that the * we have

been using for multiplication is actually mapped to the MATLAB function that

handles matrix multiplication. Since a vector is a special case of a matrix, *

can handle vector multiplication too.

Vectors operations
are intuitive and
easy

M.23

PMcL Vector Operations Index

2015 MATLAB® – A Tutorial

So what is the line:

gs=g*s;

actually asking MATLAB to do?

To illustrate vector multiplication, let’s consider two row vectors:

   fedcba  yx ,

There are two types of vector product, the inner product and the outer product.

The inner product is familiar from physics, and is just the dot product, which

results in a scalar:

 

11 13 31 



















 cfbead

f

e

d

cbaT
xyyx

The outer product creates a matrix:

 

33 31 13 





































cfcecd

bfbebd

afaead

fed

c

b

a
T
yxyx

In general, we need the number of columns of the first vector to match the

number of rows of the second vector, otherwise the multiplication is undefined.

We now understand the error “Inner matrix dimensions must agree.” We are

asking MATLAB to perform:

   undefined fedcbayx

What we really wanted to do was a multiplication on an element-by-element

basis. That is, to multiply two “signals” together, we need to multiply

corresponding values at particular time instants. We wanted:

    cfbeadfedcba yx

The vector inner
product

The vector outer
product

The vector element-
by-element product

M.24

Index Vector Operations PMcL

MATLAB® – A Tutorial 2015

MATLAB supports this operation, for all types of operator, and refers to them

as array operations, which perform the operation on an element-by-element

basis. To use an array operator, we prefix the normal operator with a period, ..

Change the multiplication line to:

gs=g.*s;

and press F5. We now see the result of multiplying the sinusoid with the

square wave in the third subplot.

As another example of the . operator, suppose we wanted to change the

original g signal to a sinusoid that has been squared. To raise a number to a

power, we use the hat, ^, operator. Since we want to raise a vector to a power,

we need to use the .^ operator:

g=cos(2*pi*f1*t);

g=g.^2;

You can try this and press F5 to see the result. Remove the line g=g.^2 when

you are satisfied that you understand the . operator.

The output of your script should now look like:

Array operations are
prefixed with a
period

M.25

PMcL Vector Operations Index

2015 MATLAB® – A Tutorial

Your script should now look something like:

% ======================================

% My first MATLAB M-file

% by PMcL

% ======================================

% clear everything

clear all;

close all;

% sample time

Ts=2e-6;

% time window

To=2e-3;

% time vector

t=0:Ts:To;

TimeAxes=[0 2e-3 -2 2];

% a sinusoid

f1=1000;

g=cos(2*pi*f1*t);

 graph(1,311,t,g,TimeAxes,'t (s)','g(t)','a sinusoid');

% a square wave

fc=10e3;

s=(square(2*pi*fc*t,20)+1)/2;

 graph(1,312,t,s,TimeAxes,'t (s)','s(t)','a square wave');

% a sampled sinusoid

gs=g.*s;

 graph(1,313,t,gs,TimeAxes,'t (s)', 'gs(t)', 'gs');

M.26

Index The FFT PMcL

MATLAB® – A Tutorial 2015

1.27 The FFT

We are now ready to embark on frequency-domain operations. We would like

to see the spectrum of each of our three signals – i.e., we would like to see just

exactly what sinusoids are used to make up each of our periodic signals. The

spectrum is just a graphical way to illustrate this information – it graphs the

amplitudes and phases of the component sinusoids versus the frequency.

For example, a signal consisting of two sinusoids in the time-domain may

appear as:

g t()

t0

In the frequency-domain, it is represented as a spectrum:

G f()

f0

The above spectrum tells us that the signal is composed of just two sinusoids.

If the graph had a scale, we could read off the component frequencies and

amplitudes (and phases).

To convert a time-domain vector into its frequency-domain representation,

(that is, to get the spectrum of a signal), we use MATLAB’s fft function.

Add the following line just after you plot the g vector:

G = fft(g);

This creates a new vector, G, that holds the spectrum. By convention, we use

capital letters to represent the frequency-domain. To graph G, we need to

generate a special frequency vector, one that is “in line” with the samples

generated by the fft function.

The spectrum is a
picture of the
component
sinusoids of a
periodic waveform

A time-domain
waveform…

… and its spectrum

The fft function is

used to get the
spectrum in
MATLAB

M.27

PMcL FFT Samples Index

2015 MATLAB® – A Tutorial

1.28 FFT Samples

The FFT operates on a finite length time record, but assumes that this time

record is exactly one period of an infinitely long periodic signal. With the

waveform shown below, where an integral number of periods fits exactly

within the time record, the infinitely long signal assumed by the FFT is correct.

t

real signal

t

Time Record

t

assumed signal by FFT

However, if we create a time record so that an integral number of periods of the

waveform do not quite fit into it, then discontinuities are introduced by the

replication of the time record by the FFT over all time:

t

real signal

t

Time Record

t

assumed signal by FFT

This effect is known as leakage, and the effect in the frequency-domain is very

apparent. For the case of a single sinusoid as shown, the normally thin spectral

line will spread out in a peculiar pattern.

In a practical setting, such as measuring signals with a DSO, we get around this

problem by windowing the time-domain waveform before taking the FFT.

In a theoretical setting, we have complete control over the time record (or time

window), so we should adjust our vectors to avoid spectral leakage. The

simplest way is to ensure that our time window encapsulates exactly an

integral number of periods of the time-domain signal. We can do this in a

theoretical setting because the time-domain signal is known and generated by

us – in a laboratory the time-domain signal is normally not known exactly.

FFT replicas
producing the
desired waveform

FFT replicas
producing
discontinuities

For simulation using
MATLAB, we need
to ensure that an
integral number of
waveform periods fit
inside the time
window

M.28

Index Time-Domain Samples PMcL

MATLAB® – A Tutorial 2015

1.29 Time-Domain Samples

To avoid FFT problems we should generate signal vectors that contain exactly

an integral number of periods. Consider taking samples of a simple sinusoid at

a rate ss Tf 1 :

t

T0

Ts

At first glance, it appears that we have sampled exactly one period of the

waveform. But if we were to take these samples and repeat them, we would

generate the following waveform:

t

T
0

which is not quite right – the period has been extended and there is a

discontinuity between one “sinusoid” and the next. On reflection, we realise

that the last point in the original sampling scheme, is actually the first point of

the next period. The way we need to sample is thus:

t

T0

Ts

Samples of a
sinusoid…

… and the
corresponding
periodic extension

Correct sampling of
a waveform over
one period involves
not repeating the
first sample

M.29

PMcL Frequency-Domain Samples Index

2015 MATLAB® – A Tutorial

That is, we need to take samples up to, but not including, 0T . We also need to

ensure that 0TNTs  , with N an integer. The best way to do this is to modify

the creation of our time vector:

% sample time

Ts=2e-6;

% number of samples

N=1000;

% time window

To=N*Ts;

% time vector

t=0:Ts:To-Ts;

1.30 Frequency-Domain Samples

The FFT function returns spectrum samples that are spaced in frequency by an

amount equal to the “fundamental frequency”. With an FFT, in all cases, the

“period” of the waveform is whatever the time window happens to be,

regardless of whatever signal is actually in the time window. The “fundamental

frequency” is therefore equal to the inverse of the time window. That is, the

FFT function really knows nothing about the “fundamental frequency” of the

actual signal, but it assumes that the samples provided in the time window are

taken over exactly one period of the waveform. We therefore have:

fo=1/To;

This is the frequency spacing between FFT samples. Since the FFT returns N

samples of the spectrum, the maximum frequency must be   01 fN  . This is

similar to the consideration of time-domain samples – the “last” sample at 0Nf

is really the first sample of the next period of the FFT output (the FFT output is

theoretically periodic and infinite in extent). Since 0TNTs  then sfNf 0 .

Therefore, the FFT output sample frequencies can be generated from:

fs=1/Ts;

f=0:fo:fs-fo;

Add these lines at appropriate locations in your Lab2.m script.

Creation of a
suitable time vector

when using the fft

function

The fft function

assumes the time
window is the period

The sample spacing
of the fft output

The sample range of
the fft output

M.30

Index Plotting a Magnitude Spectrum PMcL

MATLAB® – A Tutorial 2015

1.31 Plotting a Magnitude Spectrum

We are now in a position to plot the spectrum. Add the following line to your

script, straight after you take the FFT:

 figure(2);

 plot(f,G);

Observe the output of Figure 2 and the Command Window. There is a warning:

Warning: Imaginary parts of complex X and/or Y

arguments ignored.

We have asked MATLAB to plot G, a vector of complex numbers

(representing phasors), versus frequency. We can’t graph a

complex number versus a real number on a 2D graph. What we

normally do is graph the magnitude spectrum separately to the phase spectrum.

Change your code so that we plot the magnitude spectrum only:

G=fft(g);

Gmag=abs(G);

figure(2);

plot(f,Gmag);

The resulting plot doesn’t look quite right. We are expecting a double-sided

spectrum (showing positive and negative rotating phasors), but we have

generated a positive frequency vector and the FFT appears to return only

positive frequencies. But since the FFT is periodic, the upper half is actually

the same as the first part of the negative-side of the spectrum:

0
f

/2fs- /2fs fs

FFT results here...

0
f

/2fs- /2fs fs

...are the same as here.

The fft output is

complex…

… so we graph
magnitude and
phase separately

The FFT is periodic,
so the upper half of
the fft output…

… is the same as
the first part of the
negative-side of the
spectrum

M.31

PMcL Plotting a Magnitude Spectrum Index

2015 MATLAB® – A Tutorial

MATLAB knows that we would like to shift the upper half of the FFT output

down to take the place of the lower half (i.e. swap the two halves) so there is a

function which does this for us. Modify the fft line of code with the

following:

G=fftshift(fft(g));

and modify the frequency vector so it reads:

f=-fs/2:fo:fs/2-fo;

and press F5 to run. The spectrum now looks right, but it has the wrong

amplitude. This is a quirk of the FFT algorithm, and to understand it fully, you

need to read Appendix A – The Fast Fourier Transform. Checking the FFT –

Quick Reference Guide, we realize that we are dealing with Case 4, so to get

correct amplitudes we need to divide the fft output by N. Change your fft

line of code to the following:

G=fftshift(fft(g))/N;

and press F5 to run. We now get the correct amplitude (in this case we know it

is correct because the phasor magnitude is just 5.0212 A).

To make the plot look better, we could use the MATLAB stem function

instead of plot:

stem(f,Gmag);

To see the effect of leakage, change the number of samples in a “period” by

changing:

% number of samples

N=700;

and pressing F5 to run. Try a few values and then return N to 1000.

Modify your script file so that it plots (using plot, not stem) the spectra of

each of the three time-domain signals on Figure 2, with each subplot using the

same axes.

The fftshift

function swaps the
two halves of a
vector

The fft function

needs to be scaled
to get the correct
amplitude

The stem function

can be used in place

of the plot

function

M.32

Index Plotting a Magnitude Spectrum PMcL

MATLAB® – A Tutorial 2015

Your script should now look something like:

% ======================================

% My first MATLAB M-file

% by PMcL

% ======================================

% clear everything

clear all;

close all;

% sample time & sample rate

Ts=2e-6;

fs=1/Ts;

% number of samples

N=1000;

% time window & FFT sample spacing

To=N*Ts;

fo=1/To;

% time and frequency vectors

t=0:Ts:To-Ts;

f=-fs/2:fo:fs/2-fo;

TimeAxes=[0 To-Ts -2 2];

FreqAxes=[-fs/2 fs/2-fo 0 0.5];

% a sinusoid

f1=1000;

g=cos(2*pi*f1*t);

 graph(1,311,t,g,TimeAxes,'t (s)','g(t)','a sinusoid');

G=fftshift(fft(g))/N;

Gmag=abs(G);

 graph(2,311,f,Gmag,FreqAxes,'f (Hz)','G(f)','sinusoid spectrum');

% a square wave

fc=10e3;

s=(square(2*pi*fc*t,20)+1)/2;

 graph(1,312,t,s,TimeAxes,'t (s)','s(t)','a square wave');

S=fftshift(fft(s))/N;

Smag=abs(S);

 graph(2,312,f,Smag,FreqAxes,'f (Hz)','S(f)','square spectrum');

% a sampled sinusoid

gs=g.*s;

 graph(1,313,t,gs,TimeAxes,'t (s)','gs(t)','gs');

Gs=fftshift(fft(gs))/N;

Gsmag=abs(Gs);

 graph(2,313,f,Gsmag,FreqAxes,'f (Hz)','Gs(f)','sampled spectrum');

Converting to
decibels

M.33

PMcL Finishing Your MATLAB Session Index

2015 MATLAB® – A Tutorial

One last thing we can do with our magnitude spectra is to graph them on a log

scale, i.e. on a dB scale. Engineers are normally interested in power, not

amplitude, and it greatly extends the range of our vertical scale. Modify your

script so that the spectrum magnitude is converted to decibels. For example:

Gmag=20*log10(abs(G));

Notice that MATLAB uses log10 for the common logarithm (base 10), and

uses log for the natural log (base e).

You will also need to change the vertical scale of the plots. Change the vertical

range to -40 dB to 0 dB and run your script.

The output of your script file should look like:

1.32 Finishing Your MATLAB Session

Make sure you save all your M-files to either the network, a USB drive, or

email them to your email account.

You are now aware of MATLAB’s basic functionality, and are well on the way

to completing the pre-lab work for Lab 2.

MATLAB is a very large software package and has many more advanced

features that you will come to use later in the subject, as well as in other

subjects and in industry.

MATLAB has many
more advanced
features

