

University of Technology, Sydney Faculty of Engineering and Information Technology

Subject:	48540 Signals and Systems			
Assessment Number:	6			
Assessment Title:	Group Project			
Tutorial Group:				
Students Name(s) and Number(s)				

Student Number	Family Name	First Name

Declaration of Originality:

The work contained in this assignment, other than that specifically attributed to another source, is that of the author(s). It is recognised that, should this declaration be found to be false, disciplinary action could be taken and the assignments of all students involved will be given zero marks. In the statement below, I have indicated the extent to which I have collaborated with other students, whom I have named.

Statement of Collaboration:

Signature(s)

Project I	Letter	

The Group Project report is due on the date specified in the Learning Guide.

Reports must be handed in to the subject coordinator.

Group Project – Marking Scheme

Project Letter

Students Name(s) and Number(s)

Student Number	Family Name	First Name

The content of your project report has been assessed according to the following criteria:

- G = all relevant material presented in a logical manner showing clear understanding, full explanations of analysis and reasons for choices and decisions in a design
- A = most relevant material presented with acceptable organisation and understanding
- **P** = little relevant material presented and/or poor organisation or understanding

Group Project – Total Marks

/4	Lab 6
/8	Digital Controller
/8	Demodulator Design
/20	TOTAL

Lab 6 – Maze Rover Modelling

Mark	Grade	Item	Comments
/1	GAP	Step response.	Measurement of step response: K , T .
/1	G A P	Frequency response.	Measurement of frequency response: ω_0 and DC (low freq) gain.
/1	GAP	Transfer function.	Description of how it was derived from step or frequency response.
/1	GAP	MATLAB [®] response verification.	Theoretical and experimental magnitude and phase response plotted together. Shows close fit, low frequency gain and ω_0 .
			plotted together. Shows close fit, steady- state value and time constant.
	/4	SUBTOTAL	

Mark	Grade	Item	Comments
/1	GAP	Desired poles.	Specification regions defined and drawn in the <i>s</i> -plane.
/1	G A P	State-variables.	Designed using matrix algebra, and then confirmed using block diagram reduction.
/1	GAP	Root-locus.	Screen shot of MATLAB [®] with RLTOOL. Investigation of 10% variation of MR pole location.
/1	GAP	Minor-loop.	Design by block diagram reduction.
/1	G A P	MATLAB [®] continuous- time step response simulation.	Continuous-time step response for all three schemes, showing actual peak time, P.O. and settling time.
/1	G A P	MATLAB [®] discrete- time step response simulation.	Discrete-time step response for all three schemes, showing actual peak time, P.O. and settling time. Effect of coefficient round-off and bilinear transformation.
/2	GAP	Lab verification.	A plot of experimental results, for each scheme, verifying that they meet the control specifications, and lab mark attached.
	/8	SUBTOTAL	

Group Project – Digital Controller

Group Project – Demodulator Design

Mark	Grade	Item	Comments
/1	GAP	VCO characteristic	Graph of f_i vs. DC input voltage. Values
/1	0 11 1		for f_o and k_v determined.
/1	GAP	Phase detector filter design.	Design of filter based on criterion.
/1	GAP	Loop filter design.	Design of filter based on criterion. Design of phase-shifter.
/1	GAP	Modulated spectra.	Identification of modulation scheme and f_c
		-	based on experimental results (magnitude spectra and time-domain waveforms).
/1	GAP	Demodulator design.	Theoretical design of demodulator, showing spectra at each point. Includes all
			frequencies, phases, gains and cutoff
			frequencies.
/1	GAP	Demodulator filter design.	Design of comb-resonator filter. MATLAB [®] simulation of demodulator.
/2	G A P	Lab verification.	A plot of experimental results when transmitting both messages, verifying that the demodulation scheme works, and lab mark attached.
	/8	SUBTOTAL	